
Discovering Additional Ontological Categories

for Words∗

Michael Gabilondo

mgabilo@gmail.com

Fernando Gomez

School of Electrical Engineering and Computer Science

University of Central Florida

Orlando, FL 32816, USA

gomez@cs.ucf.edu

January 2010 (Revised February 2018)

Abstract

The unsupervised algorithm proposed in this paper discovers additional onto-

logical categories for words which are underrepresented in the WordNet ontology.

The basic approach begins with extracting local syntactic dependencies for each

word by parsing a large corpus to construct feature vectors for those words. The

words’ feature vectors are used to construct feature vectors for upper-level onto-

logical concepts by bootstrapping from the existing WordNet ontology. We use a

similarity metric between these two types of feature vectors to discover ontologi-

cal categories for each word. The algorithm discovered a total of 7420 additional

ontological categories for 12721 words. Three human judges evaluated the cor-

rectness of a random subset of 200 out of the 7420 categorizations and found an

average precision of 75.5% and average inter annotator agreement of 72.5%.

1 Introduction

The organization of the upper-level ontology of language is crucial for semantic inter-

pretation. This is because the meaning of a verb is dependent in part on the ontological

categories of its arguments’ head nouns. For example, the verb “break” in the sentence

“She broke the table” means to damage a physical object. This sense of the verb is

chosen because the sense of “table” which was chosen is a physical object. Shifting the

ontological category of the head noun to something that is not a physical object, as in

“She broke the silence,” also changes the meaning of the verb. If a sense of a word is

∗(c) 2018 Michael Gabilondo, Fernando Gomez. This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/

1

https://creativecommons.org/licenses/by-nc-nd/4.0/


not correctly categorized in the ontology, interpretation of certain sentences will not be

possible. For example, if someone does not know that “tavern” is a business and only

knows that it is a building, the sentence “The tavern hired a new bartender” would not

make sense because buildings are artifacts, not human agents that can hire people.

The WordNet ontology is widely used in natural language understanding applica-

tions. However, there are many words in WordNet that require additional ontological

categorizations. In general, this is also a problem for all similarity metrics defined over

WordNet, such as [12]. For example, “farm” is only categorized as a workplace.n.01

and “publisher” is categorized as a business organization.n.01 and a person.n.01. From

an intuitive point of view, we sense that business organizations and workplaces are sim-

ilar. However, only entity.n.01 subsumes both business organization.n.01 and work-

place.n.01. Since entity.n.01 is the most general concept in the ontology, any existing

WordNet similarity metric used to calculate the similarity between these two concepts

would return a very low score. Our algorithm can categorize “farm” under an addi-

tional concept (e.g., business organization.n.01) which would make “publisher” and

“farm” more similar.

Many words, particularly proper nouns, are also missing some common senses. For

example, the word “Maria” has only two senses: “a dark region on the surface of the

moon,” and “valuable timber tree of Panama.” In this case, “Maria” should also be

categorized under person.n.01. Of course, the problem is not limited only to proper

nouns. In addition, many words include uncommon senses. For example, “computer”

has a sense that means “an expert at calculation.” However, in practice “computer” will

almost always refer to a machine for performing calculations automatically.

The unsupervised algorithm proposed in this paper attempts to address the above

concerns by discovering additional ontological categories for words in WordNet 3.0.

The output is a new ontology in which upper-level concepts are labeled with a sub-

set of concepts from the upper-level WordNet ontology. However, words in the new

ontology are not categorized in the same way as words in WordNet. The categories

chosen for each word reflect its primary senses as used in the naturally-occurring un-

labeled text corpora that is used to train the algorithm. As an example of the pro-

gram’s output, consider the word “principality”, which in WordNet is only categorized

under domain.n.02, a subconcept of location.n.01. Our algorithm categorizes “prin-

cipality” under administrative district.n.01, which is subsumed by location.n.01, and

political unit.n.01, which is subsumed by social group.n.01.

The rest of the paper is organized as follows. Some terminology and background is

found in Section 2. An overview of our method is presented in Section 3. We present

some work that is related to our method in Section 4. The details of the construction

of word vectors are explained in Section 5. The details of the construction of concept

vectors are explained in Section 6. We show how ontological categories are discovered

for words in Section 7.

2 Terminology

The documentation for WordNet can be found in [9], but we give a brief introduction.

The WordNet ontology is made up of synsets. A synset is a set of synonymous words

2



that represents a concept. For example, the synset pen.n.03, which has the gloss, “a

portable enclosure in which babies may be left to play,” is {pen, playpen}. This means

that “pen” or “playpen” can be used in some context to mean pen.n.03. A sense of a

word w refers to one of the synsets that the word w is a member of.

Synsets are related to other synsets view hypernymy. Synset A is a hypernym (i.e.,

superconcept) of synset B if native speakers accept the statement, “B is a (kind of) A.”

Hyponymy is the inverse relationship. However, we will use the terms subconcept and

superconcept instead of hyponym and hypernym. Also, we will favor the term concept

or ontological category over synset. When referencing concepts in WordNet, we will

use a notation like xyz.n.03; this instance is simply the label of the third ontological

category to which the word “xyz” has been assigned, or equivalently, this is the label

of the third sense of the word “xyz”.

We will say that concept A is a descendant of concept B if it is possible to start

at A and traverse only superconcepts to arrive at B (or to start at B and traverse only

subconcepts to arrive at A). For example, farm.n.01 is a subconcept of workplace.n.01,

which in turn is a subconcept of geographic point.n.01, and therefore farm.n.01 is a

descendant of geographic point.n.01. The inverse relationship is ancestor, e.g., geo-

graphic point.n.01 is an ancestor of farm.n.01.

3 Our Method

The overall system architecture is shown in Figure 1. The approach first requires pars-

ing a large untagged corpus to build feature vector representations that characterize the

local syntactic context of each noun; these vectors are referred to as “word vectors.”

This approach assumes the distributional hypothesis of [5], which holds that words

with similar meanings appear in similar grammatical contexts. For example, the words

“rice” and “pasta” both share similar sets of verbs that they can be objects of: they

are commonly “boiled,” “eaten,” “cooked” or “flavored,” but not usually “calculated”

or “knocked up”. This stems from the fact that the verbs “eat,” “cook” and “flavor”

tend to select for words which are categorized under the ontological concept for food

to appear as their objects’ head nouns.

Using these word vectors, vectors that characterize the syntactic context of Word-

Net concepts are created, and are referred to as “concept vectors.” More precisely, a

concept vector for a concept c is a feature vector that characterizes the local syntactic

context of words categorized exclusively under c. This is done by using WordNet on-

tology to find pairs of words that together unambiguously identify the target concept,

and then creating a new feature vector by taking the common features of the two word

vectors corresponding to the two words. For a given concept, many such feature vec-

tors are created and merged to create the corresponding concept vector. For example,

“port” is ambiguous and can mean a location.n.01 or a wine.n.01, among other things.

The word “wine” is also ambiguous because it can mean a beverage.n.01 or (rarely) a

chromatic color.n.01. By taking the intersecting features of the word vectors of “port”

and “wine”, it is possible to isolate some of the features that represent the syntactic

contexts of words categorized exclusively under beverage.n.01.

Since most concept vectors are extremely sparse and tend to represent low level

3



Wikipedia

Create

Word Vectors

(Section 5)

English

Sentences

Word

Vectors

WordNet
Create Concept

Vectors (Section 6)

Committees

Categorize Words

(Section 7)

New Ontological Categories for Words

Syntactic Parser

Parsed

Sentences

Figure 1: Overall System Architecture

concepts, the concept vectors are clustered to create a set of upper-level concepts which

form the upper-level of our new ontology. These clusters are referred to as “commit-

tees.” Each committee has a label X , which is named after an upper-level concept in

the WordNet ontology. Our clustering method ensures that for any concept c whose

concept vector was used to form the committee X , c must be a direct or indirect sub-

concept of X or c must equal X . This last statement means that the concept vectors of

concepts from dissimilar parts of the ontology are not merged into the same committee

even if those concept vectors are similar.

Following this step, the word vector corresponding to each word w is assigned to

its most similar committees in order to discover the ontological categories or senses

of w. The overlapping features of the word vector and the top ranking committee

is removed from the word vector, and the word vector is again assigned to its most

similar committees. The process repeats until the word vector is no longer similar to

any committee or the number of features in the word vector is too small. Removing

the overlapping features from the word vector allows for discovering the less frequent

senses of the word which would otherwise be masked by the features of the dominant

senses.

4



4 Related Work

This paper is partially motivated by some of the ideas presented in [4], which is a

catalog of modifications to the upper level of the WordNet 2.1 ontology. The problems

in that work were uncovered by a semantic interpreter which failed to correctly interpret

certain sentences. One example of such a failure is the sentence, “The characters were

engraved on the old coin.” The verb “engrave” here means to carve, cut or etch into a

physical material or surface. In both WordNet 2.1 and 3.0, the only sense for “coin”

is categorized under system of measurement.n.01, which is an abstraction.n.06 and

not a physical object.n.01. The verb predicate corresponding to the correct sense of

“engrave” cannot allow for words only categorized as abstraction.n.06 to appear as the

head of the object, so interpreting the sentence is not possible.

The approach taken there was usually to tangle the hierarchy (i.e., introduce mul-

tiple inheritance), although sometimes concepts were moved from one part of the on-

tology to another. An example of tangling would be making coin.n.01 also a subcon-

cept of physical object.n.01, which would resolve the problem above. This would

fix the interpretation not only for the word “coin”, but also for many other words

which are categorized under coin.n.01, such as “nickel” or “fivepence”. In this work,

the hierarchy is not tangled and the upper level hierarchy remains the same; instead,

it is words that are categorized under various ontological concepts. For example,

“coin”, “nickel”, “fivepence” may be categorized under physical object.n.01 and sys-

tem of measurement.n.01. These two approaches are roughly equivalent. The main

differences between this work and [4] is that the former is unsupervised and the lat-

ter was mostly manual, although aided by an existing semantic interpreter. Overall, the

goal of this work is to find similar problems in WordNet 3.0 and fix them automatically.

In general, the WordNet ontology must be organized in a way that reflects the on-

tology of natural language [4]. For example, it is possible to argue that in an ontology,

the concept process should subsume the concept physical object because all physical

objects have a temporal nature: they come into existence at one time instance and even-

tually come out of existence. However, this reasoning is problematic, as the ontology

of natural language does make many distinctions between physical objects and entities

that are conventionally thought of as processes, such as earthquakes. Physical objects

like rocks may be “picked up” and “thrown” but earthquakes may not; earthquakes may

be “experienced” or “forecast”, but physical objects may not, at least not in the same

sense.

The automatic acquisition of selectional preferences for verbs with respect to Word-

Net classes has also been an active area of research, with works such as [1] and

[11]. The former work, which used a sense-tagged corpus to learn selectional pref-

erences for verbs, revealed instances of the general problems described here; for ex-

ample, words such as “temple” or “synagogue” which are only categorized as a build-

ing.n.01 but not a social group.n.01 caused their system to fail to learn the correct

selectional preferences for some verbs. In this particular case, the approach proposed

here does categorize both “synagogue” and “temple” as an institution.n.01, which is a

social group.n.01.

Other approaches that attempt to acquire lexical relations from corpora include

[13], [2] and [3]. These approaches use mainly lexico-syntactic patterns, as suggested

5



by [6]. The latter work, VerbOcean, uses patterns to acquire different kinds of verb

relations; the former two works use patterns to discover hypernymy relations between

nouns and automatically construct ontologies. A typical example of such a pattern is

NP0 SUCH AS NP1, which matches fragments like “local businesses such as taverns,”

and “hobbies such as stamp collecting.” These fragments would be used as evidence for

“tavern” being a subconcept of “business” and “stamp collecting” being a subconcept

of “hobby.”

Our method also shares similarities with some approaches that learn clusters of

similar words but do not attempt to build concept hierarchies, as in [7] and especially

[10]. Both of these works use the distributional hypothesis as we do to find similarities

between words. The latter paper proposes an algorithm called Cluster by Committee

(CBC), which is where we get the name “committee.” The approach there is to first

create a set of word vectors in much the same way we do, and then to create a set of

tight clusters of word vectors called committees; each committee represents a distinct

concept. As many committees as possible are created on the condition that no two com-

mittees are similar. Word vectors are assigned to the committees in order to discover

senses for each word in a method that is similar to ours. Hence, it is reasonable to view

our algorithm as as extension of CBC. The main differences between their algorithm

and ours is in the way the committees are created and what they represent. Our com-

mittees correspond to WordNet ontological categories, so the output of our algorithm

can be used to extend WordNet.

5 Representing Words

Following [10], each word w is represented by a feature vector, which will be referred

to as a “word vector.” Each feature corresponds to a local syntactic context in which

a word may appear. Let Fc(w) be the frequency with which word w occurs in context

c. The value of the feature is the pointwise mutual information PMI(w, c) between the

word w and the context c:

PMI(w, c) = log

Fc(w)
N∑

i

Fi(w)

N
∗

∑

j

Fc(j)

N

(1)

In the above definition, the index i ranges over all contexts and the index j ranges

over all words. N =
∑

i

∑
j Fi(j) is the frequency with which all words occur in all

contexts.

The following list presents each type of feature with an example feature extracted

from the sentence, “Migratory birds from Florida State fly South in the Winter.”

• SUBJECT-HEAD-OF(v). The target noun is the head of a simple noun phrase that

is the subject of a verb v. The feature SUBJECT-HEAD-OF(fly) is extracted for

the word “bird.”

• OBJECT1-HEAD-OF(v). The target noun is the head of a simple noun phrase that

6



is the first object of a verb v. The feature OBJECT1-HEAD-OF(fly) is extracted

for the word “State.”

• OBJECT2-HEAD-OF(v). The target noun is the head of a simple noun phrase that

is the second object of a verb v. No feature of this type is extracted for any word

in the sentence because there are no ditransitive verbs.

• MODIFIES-HEAD(n). The target noun acts as a modifier for a head noun n of

a noun phrase. The feature MODIFIES-HEAD(State) is extracted for the word

“Florida.”

• HEAD-OF-PP-ATTACHED-TO-VERB(p, v). The target noun is the head of a sim-

ple noun phrase contained in a prepositional phrase headed by preposition p; that

prepositional phrase is attached to the verb v. The feature HEAD-OF-PP-ATTACHED-TO-VERB(in,

fly) is extracted for the word “Winter.”

• HEAD-OF-PP-ATTACHED-TO-NP(p, n). The target noun is the head of a simple

noun phrase contained in a prepositional phrase headed by preposition p; that

prepositional phrase is attached to a simple noun phrase whose head is the noun

n. The feature HEAD-OF-PP-ATTACHED-TO-NP(from, bird) is extracted for the

word “State.”

• HEAD-OF-NP-WITH-PP-ATTACHED(p, n). The target noun is the head of a sim-

ple noun phrase to which a prepositional phrase headed by prepositional p at-

taches; that prepositional phrase contains a simple noun phrase headed by noun

n. The feature HEAD-OF-NP-WITH-PP-ATTACHED(from, State) is extracted for

the word “bird.”

A parser was necessary to find out if a given prepositional phrase attached to a noun

phrase or a verb, and for identifying the subject-verb and object-verb relationships. To

this end, we used a modified version of the Charniak parser to parse a large portion of

Wikipedia. This modified parser made certain grammatical relationships explicit that

the vanilla parser did not. The word vectors were constructed from over 8.5 million

verb clauses.

6 Representing Concepts

A concept vector for a concept c is a feature vector that characterizes the local syntactic

context of words categorized exclusively under c. This section presents the details of

how we create concept vectors from the existing set of word vectors and the WordNet

3.0 ontology.

Our method requires a similarity measure between any two concepts c1 and c2 in

the WordNet ontology. We use the information content based similarity measure from

[8]. The information content IC(c) of a concept c, originally introduced by [12], is

defined as IC(c) = −logp(c), where p(c) is the estimated probability of a concept c

occurring in some corpora. Intuitively, the more general upper-level concepts in the

ontology have lower information content than the more specific lower-level concepts.

7



For example, chair.n.01 has a higher information content than furniture.n.01. The least

common subsumer LCS(c1, c2) of two concepts c1 and c2 is defined as the information

content of a concept which subsumes both c1 and c2 and has the highest information

content out of all concepts that subsume both c1 and c2. The similarity between two

concepts c1 and c2 is given by:

sim(c1, c2) =
2× IC(LCS(c1, c2))

IC(c1) + IC(c2)
(2)

Whenever we say that concepts c1 and c2 are similar it means that sim(c1, c2) > σ,

for some large threshold σ between 0 and 1. If we say that c1 and c2 are not similar

it means that sim(c1, c2) < σ′, for some low threshold σ′ between 0 and 1. We also

require the following two definitions.

Definition 1 The union ~v1 ∪ ~v2 of two feature vectors ~v1 and ~v2 yields a third feature

vector containing every feature of ~v1 and ~v2. If a feature is common to both vectors,

the feature with the larger of the two values is chosen.

Definition 2 The intersection ~v1 ∩ ~v2 of two feature vectors ~v1 and ~v2 yields a third

feature vector containing the common features of ~v1 and ~v2. If a common feature has

different values in both vectors, the minimum of the two values is chosen.

In order to determine if two word vectors can be intersected to unambiguously iden-

tify a target concept, consider two distinct words w1 and w2, and a target concept c.

Assume that both of these words have a sense that is similar to c, so that the intersec-

tion of their word vectors will in part include the syntactic context of c. The rule for

determining if the intersection is unambiguous is given by the following definition.

Definition 3 The intersection of two word vectors ~w1 and ~w2 corresponding to two

distinct words w1 and w2, respectively, is said to be unambiguous if any sense c′ of w1

that is not similar to c is also not similar to any sense of w2.

To see why this works, suppose this condition does not hold. Let c′ be a sense of

w1 that is not similar to c, and c′′ be a sense of w2 that is similar to c′. By transitivity

of similarity, c′′ is also not similar to c. Hence, w1 has a sense c′ and w2 has a sense c′′

that are similar to each other but both not similar to the target concept c. Therefore, the

intersection of the syntactic contexts of w1 and w2 will also include the contexts for c′

and c′′, both of which are not similar to the target concept c.

The algorithm below makes use of the words in WordNet synsets (i.e., concepts).

When referring to the set of words that make up the synset c, we will write synset(c).
Let L1(c) be the set that contains the words in synset(c). Let L2(c) be the set that con-

tains the words in L1(c) and the words in {w ∈ synset(c′) : c′ is a descendant of c and sim(c, c′) >
σ}. A concept vector ~c for every concept c in WordNet is constructed using Algorithm

1.

To illustrate the creation of concept vectors, consider the concepts religion.n.01

(a religious belief) and religion.n.02 (organized religion). The words “religion” and

“faith” are in the synsets of both of these concepts. Hence, taking the intersecting

8



Algorithm 1 MAKE-CV(c)

1: Initialize ~c to an empty feature vector

2: for each pair of words l1, l2 ∈ L1(c)× L2(c) do

3: if l1 6= l2 and ~l1 ∩ ~l2 is unambiguous then

4: ~c← ~c ∪ (~l1 ∩ ~l2)
5: end if

6: end for

7: return ~c

syntactic features of both of these words (i.e., taking the intersection of their word

vectors) would not unambiguously identify either of these concepts.

Now consider “theism”, which is word that is in the synset for theism.n.01, a sub-

concept of religion.n.01. It is possible to take the intersection of the word vectors of

“theism” and “faith” to get the context of religion.n.01. This is because no sense of

“faith” that is dissimilar to religion.n.01 is similar to any sense of “theism”. Of course,

the performance of this heuristic relies on the correctness of WordNet.

After the concept vectors are created, they are clustered to produce a set of com-

mittees (see Section 3. ) The algorithm makes use of the similarity between two feature

vectors ~v1 and ~v2, which is defined using the cosine similarity metric:

COSINE-SIM(~v1, ~v2) =
~v1 · ~v2
‖~v1‖‖~v2‖

(3)

In the algorithm below, C(c) denotes the concept vector of concept c and W (w)
denotes the word vector of word w. CLUSTER(c) is a feature vector that is formed from

taking the union of all concept vectors of concepts that are descendants of c along with

the concept vector of c itself. FEATURE-COUNT(c) denotes the number of features of

c.

Algorithm 2 MAKE-COMMITTEES(c)

1: for each subconcept h of c do

2: C(h)← MAKE-COMMITTEES(h)
3: sim← COSINE-SIM(C(h), CLUSTER(c))
4: fnum← FEATURE-COUNT(C(h))
5: if sim ≥ θ or fnum < λ then

6: C(c)← C(c) ∪ C(h)
7: else

8: Add C(h) with label h to set of committees

9: end if

10: end for

11: return C(c)

The algorithm visits concepts in a depth-first, post-order traversal, beginning with

he most general concept entity.n.01. If the procedure is called on concept c, then for

9



each subconcept h of c, it will do the following:

1. It will call itself using h as its argument. This call may result in committees with

labels that are h or descendants of h added to the set of committees.

2. The recursive call returns a new concept vector C(h) for h, which represents the

centroid of a cluster that includes some concept vectors in set {C(h)}∪{C(h′) :
h′ is a descendant of h}. The concept vectors which were chosen for the cluster

represented by C(h) were the concept vectors not yet chosen to be part of any

committee.

3. If C(h) is similar to CLUSTER(c) or C(h) has few features, then C(h) is unioned

with C(c), and the result is stored back in C(c). Otherwise, C(h) is added to the

set of committees. The procedure returns C(c).

The algorithm has parameters λ and θ. Parameter λ is the minimum number of

features a committee can have; increasing it also tends to create fewer committees, and

those which do get created tend represent higher level concepts. Parameter θ controls

how course grained the committees are allowed to be: the lower this value, the fewer

committees get created and the more course grained they are.

In step 3, we use the heuristic of comparing the feature vectors CLUSTER(c) and

C(h), and if they are dissimilar then C(h) is added to the set of committees. The

justification is that if these two vectors are similar, then the concept h is not well-

distinguished from its sibling concepts, so in this case C(h) and C(c) are merged. If

they are dissimilar, then h is well-distinguished from its siblings and so C(h) should

stand as its own committee. There is a tendency of upper-level WordNet concepts to

have a set of subconcepts that have very little in common. For example, artifact.n.01

has subconcepts instrumentality.n.03, excavation.n.03, decoration.n.01, etc., that do

not have much in common besides being artifacts. Therefore, CLUSTER(artifact.n.01)
is dissimilar to most feature vectors formed from the subconcepts of artifact.n.01, so

many of its subconcepts will be used as the labels of new committees.

7 Categorizing Words

The algorithm below discovers ontological categories for each word w by assigning the

word vector of w to its most similar committees. For each word w, do the following:

1. Let C be the set of committees,

cmax = argmax
c∈C

COSINE-SIM(W (w), c)

and smax = COSINE-SIM(cmax,W (w)).

2. If smax > β, then assign w to the ontological category represented by the label

of cmax. This step assigns w to its most similar committee.

10



3. For each c ∈ C, if COSINE-SIM(c,W (w)) > β′, then assign w to the ontolog-

ical category represented by the label of c. This step assigns w to all similar

committees, but the parameter β′ > β.

4. Remove from W (w) the features of W (w) ∩ cmax.

5. Repeat the above steps if FEATURE-COUNT(W (w)) > α and smax > β.

We remove from the word vector of w the overlapping features between the word

vector of w and the most similar assigned committee, as suggested by [10]. This al-

lows the program to discover less common senses of w which are masked by domi-

nating senses. Note that the word w is assigned to all similar committees, not just the

top-most similar committee. However, a different threshold β′, such that β′ > β, is

used for assigning w to the other committees which ranked lower than cmax. In our

experiments, we chose β = 0.067 and β′ = 0.11.

8 Evaluation

In order to evaluate the output of our program, we asked three human judges to evaluate

if a set of random words were correctly categorized. The output is in the form of word-

concept pairs; a given word-concept pair w, c is correct if native speakers accept the

statement, “w can be a kind of c.” For example, “chair can be a kind of furniture.” An

equivalent condition for correctness is, “w has a sense which is subsumed by c.” A pair

w, c was chosen only if

• sim(c′, c) < 0.30, for all WordNet senses c′ of w, where sim is given by Equa-

tion 2 and

• For all WordNet senses c′ of w, c′ is not a descendant of c.

The second condition filters out additional pairs that were not filtered by the first

condition. These conditions ensure that the judges evaluate only novel ontological

categorizations for words. A total of of 12721 words were categorized and there was

a total of 18623 word-concept categorizations. Of these 18623, there were 7420 novel

word-concept categorizations as determined by the rule above.

The judges were presented with 200 random novel word-concept pairs. For each

pair, the judges were asked to evaluate whether any sense of the word could be sub-

sumed by the concept. On average, 75.5% of the pairs were judged to be correct. The

average inter annotator agreement was 72.5%.

Other approaches for discovering word senses or inducing ontologies have attempted

automatic evaluation with respect to a gold standard such as WordNet. As pointed out

by [10], such evaluations are problematic because the purpose of our work is to dis-

cover additional word categorizations that are not in WordNet.

9 Conclusion

The WordNet ontology is used in a variety of natural language understanding applica-

tions. The correct organization of the upper-level ontology is important for semantic

11



interpretation, word sense disambiguation, the performance of any similarity metric

implemented for that ontology and any other task where semantics are involved. We

have presented a novel unsupervised approach for discovering additional ontological

categorizations for words in WordNet. Evaluation by three human judges revealed an

average of 75.5% of the additional categorizations were correct. The judges agreed

with each other an average of 72.5% of the time. We plan to enrich the WordNet on-

tology with the discovered categorizations. One potential future direction is using our

method to acquire domain specific categorizations for words, particularly by exploiting

biomedical texts.

References

[1] Eneko Agirre and David Martinez. Learning class-to-class selectional prefer-

ences. In ConLL ’01: Proceedings of the 2001 workshop on Computational Nat-

ural Language Learning, pages 1–8, Morristown, NJ, USA, 2001. Association

for Computational Linguistics. doi: http://dx.doi.org/10.3115/1117822.1117825.

[2] Sharon A. Caraballo. Automatic construction of a hypernym-labeled noun hier-

archy from text. In Proceedings of the 37th annual meeting of the Association for

Computational Linguistics on Computational Linguistics, pages 120–126, Mor-

ristown, NJ, USA, 1999. Association for Computational Linguistics. ISBN 1-

55860-609-3. doi: http://dx.doi.org/10.3115/1034678.1034705.

[3] Timothy Chklovski and Patrick Pantel. Verbocean: Mining the web for fine-

grained semantic verb relations. In Dekang Lin and Dekai Wu, editors, Proceed-

ings of EMNLP 2004, pages 33–40, Barcelona, Spain, July 2004. Association for

Computational Linguistics.

[4] Fernando Gomez. Semantic interpretation and the upper-level ontology of word-

net. Journal of Intelligent Systems, 16(2):93–116, 2007.

[5] Zellig S. Harris. Mathematical structures of language [by] Zellig Harris. Inter-

science Publishers New York,, 1968. ISBN 0470353163.

[6] Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora.

In Proceedings of the 14th conference on Computational linguistics, pages 539–

545, Morristown, NJ, USA, 1992. Association for Computational Linguistics.

doi: http://dx.doi.org/10.3115/992133.992154.

[7] Donald Hindle. Noun classification from predicate-argument structures. In Pro-

ceedings of the 28th annual meeting on Association for Computational Linguis-

tics, pages 268–275, Morristown, NJ, USA, 1990. Association for Computational

Linguistics. doi: http://dx.doi.org/10.3115/981823.981857.

[8] Dekang Lin. An information-theoretic definition of similarity. In ICML ’98: Pro-

ceedings of the Fifteenth International Conference on Machine Learning, pages

296–304, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

ISBN 1-55860-556-8.

12



[9] George A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38

(11):39–41, 1995. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/219717.

219748.

[10] Patrick Pantel and Dekang Lin. Discovering word senses from text. In In Pro-

ceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Min-

ing, pages 613–619, 2002.

[11] Philip Resnik. Selectional preference and sense disambiguation, 1997.

[12] Philip Resnik. Semantic similarity in a taxonomy: An information-based measure

and its application to problems of ambiguity in natural language. Journal of

Artificial Intelligence Research, 11:95–130, 1999.

[13] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Learning syntactic patterns

for automatic hypernym discovery. In Lawrence K. Saul, Yair Weiss, and Léon

Bottou, editors, Advances in Neural Information Processing Systems 17, pages

1297–1304. MIT Press, Cambridge, MA, 2005.

13


	Introduction
	Terminology
	Our Method
	Related Work
	Representing Words
	Representing Concepts
	Categorizing Words
	Evaluation
	Conclusion

