
The m-stage pipeline scheduling problem is NP-Complete

Michael Gabilondo

COT 6410

April 20, 2010

Contents

1 Introduction 2

2 Modeling the Problem Formally 3

3 Investigate the Complexity of the Formal Problem 5

4 Redefine the Problem 6

5 Prove the new Problem is NP-Complete 6

6 Conclusion 7

1

Figure 1: A pipeline chart (best viewed in color)

1 Introduction

Consider the problem of scheduling a set of machine-level instructions on a pipeline processor. I
consider a hypothetical machine that bears similarities to existing pipeline processors. Every machine
cycle, at most one instruction can enter the pipeline. If there are m stages in the pipeline, then every
instruction remains in the pipeline for m machine cycles; the instruction moves from stage 1 in the
first cycle, to stage 2 in the next cycle, all the way to stage m for the mth cycle.

It might happen that one instruction Ix may write to a register and then a following instruction
Iy may read the data in that register; I say that instruction Iy depends on instruction Ix because
of data moving between them. Instruction Ix remains in the pipeline for m stages. If instruction
Iy is scheduled m time units after Ix begins, then there is no risk of the data dependency not being
honored. If there is data forwarding between pipeline stages, data can flow from Ix to Iy before
Ix is completely finished and so it may be possible the schedule Iy less than m time units after Ix
begins.

If instruction Iy is scheduled after Ix before the data is available for reading, the pipeline will not
issue new instructions until Iy can read the data (i.e., until Ix produces the data). This is done by
not allowing Iy to advance to the next pipeline stage; this also has the effect of not allowing new
instructions to enter the pipeline and not allowing instructions in previous pipeline stages (relative to
the stage of Iy) to advance. Instructions that are in pipeline stages that follow the pipeline stage that
in Iy is in still advance to the next stage. A dynamic-scheduling algorithm for a pipeline processor
attempts to start one instruction every machine cycle, but it must schedule the instructions so that
the dependency constraints are not violated. If this is not possible, the pipeline must be stalled in
the manner previously described, but the scheduler must minimize the number of stalls.

Figure 1 illustrates how the instructions move through the pipeline in time. In that figure, a JOB
is an instruction; each job has 5 tasks because there are 5 pipeline stages. The pipeline stages are P1,
P2, P3, P4 and P5. Jobs 2, 3, 1 and 4 are scheduled to begin within the first four time units. During
time 1, only P1 is not idle and is executing task 1 of job 2. At time 2, job 2 progresses down the
pipeline to P2, which executed task 2. Simultaneously, job 3 enters the pipeline at P1, which executes
task 1. During the next cycle, Jobs 3 and 2 move down the pipeline and Job 1 enters the pipeline. In
the figure, task 2 of job 4 depends on task 4 of job 2; perhaps, task 4 computes a value that is required
by task 2. In this case, it is clear that the first task of job 4 cannot be scheduled until 3 time units
after the first task of job 2 is scheduled. That means the scheduler must find two instructions it can
schedule after Job 2 or stall the pipeline.

The nearly identical problem that faces an optimizing compiler of attempting to reorganize

2

an instruction sequence to minimize the number of no-ops introduced and still satisfying

the dependency constraints between instructions was proved to be NP-Hard for an unbounded
pipeline interlock length [3]; an unbounded pipeline interlock length means that the maximum number
of cycles an instruction has to wait for its data to produced by another instruction is unbounded (not
bounded by a polynomial). The main difference between our high level problem and the problem
described [3], is that our problem considers a dynamic-scheduling pipeline, wherein the instructions
are scheduled during execution, and [3] takes the perspective of an optimizing compiler, wherein the
instructions are reorganized before execution.

The formal NP-Complete problem minimum precedence constrained sequencing with de-
lays [1] seems to be the formal problem of [3], although that name is not used and there are some
extra complications. This problem will be used to prove that one formal interpretation of pipeline
scheduling is NP-Complete. Section 2 takes steps to give a formal definition for the problem. Section
3 discusses my attempts to prove that the problem is NP-Complete; I was not able to prove this, but
some useful observations come out of it, anyways. Section 4 shows how I redefined the problem in a way
that was motivated from the previous section. In Section 5, I prove the new problem is NP-Complete,
and section 6 concludes the paper.

2 Modeling the Problem Formally

The problem as I have described it above has similarities to the m-machine flow-shop scheduling
problem, which is NP-Complete [4]. The problem is stated informally, and then the formal definition
is stated.

m-machine flow-shop scheduling

INSTANCE A set J of jobs, each job j ∈ J consisting of m tasks, and m also is the number of
processors. The m tasks of job j are denoted t1(j), t2(j), ..., tm(j). Each task t has a length l(t).
An integer, D, which is an upper-bound on the finishing time of the last task.

QUESTION Is there a flow-shop schedule for J that meets the deadline D? A flow-shop schedule S

has the following constraints

• Task ti(j) is to be executed on processor i, which means every job j is executed on all m

processors, one task per processor

• A processor cannot execute more than one task at a time

• Two tasks of the same job cannot be executed at the same time

• Task i+ 1 of a job j cannot start until task i has completed; i.e., the tasks are ordered

• If a task t on processor i is scheduled on S(t), then nothing else can be scheduled on that processor
until S(t) + l(t).

Does max
ti(j),∀i,j

S(ti(j)) + l(ti(j)) ≤ D? That is, does the last task finish before or on time D?

The left part of the figure below shows an illustration of three jobs on a 3-machine flow-shop.
Because there are three machines, each job must have three tasks. A task t has length relative to the
length of the strip of color representing task t in the figure (requires a color printing). On the right, a
flow-shop schedule has been found that meets the deadline D = 12. Notice that the schedule does not
violate the flow-shop constraints.

Now I state the formal definition as given in [2].
m-machine flow-shop scheduling

3

Figure 2: An instance of 3-machine flow-shop and a corresponding schedule

INSTANCE Number m ∈ Z+ of processors, set J of jobs, each job j ∈ J consisting of m tasks,
t1(j), t2(j), ..., tm(j) (with ti(j) to be executed by processor i), a length l(t) ∈ Z+

0 for each such
task t, and an overall deadline D ∈ Z+.

QUESTION Is there a flow-shop schedule for J that meets the deadline, i.e., is there

• a collection of one-processor schedules Si : J → Z+
0 , 1 ≤ i ≤ m, such that

• Si(j) > Si(k) implies Si(j) ≥ Si(k) + l(ti(k)),

• for each j ∈ J the intervals [Si(j), Si(j) + l(ti(j))) are all disjoint,

• for each j ∈ J and 1 ≤ i < m, Si+1(j) ≥ Si(j) + l(ti(j)), and

• for all 1 ≤ i ≤ m, 1 ≤ j ≤ |J |, Si(j) + l(ti(j)) ≤ D?

The pipeline scheduling problem seems to be a special case of 3-machine flow-shop scheduling. However,
the pipeline scheduling problem appears to have the following differences.

• All tasks are unit length, i.e., l(ti(j)) = 1, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

• σi+1(j) = σi(j) + 1, i.e., task i+1 of job j must begin immediately on processor i+1 after task
i finishes on processor i. This makes our problem a type of no-wait flow-shop, i.e., m-machine
no-wait flow-shop, which is NP-Complete (without unit length tasks) [4].

• A partial order ≺ is defined over the tasks. t ≺ t′ means that task t′ cannot begin until task t

finishes because, for example, t produces data that is required by t′.

This naturally leads into the following formal definition for the pipeline scheduling problem:

Pipeline Scheduling

INSTANCE Number m ∈ Z+ of processors, set J of jobs, each job j ∈ J consisting of m tasks,
t1(j), t2(j), ..., tm(j) (with ti(j) to be executed by processor i), a length l(t) = 1 for each such
task t, and an overall deadline D ∈ Z+. A partial order ≺ over the tasks, indicating precedence
constraints between tasks.

4

Figure 3: An instance of minimum precedence constrainted sequencing with delays. On the
right, the DAG is shown; task 4 depends on task 2 and task 2 has delay 0, so task 4 cannot start until
d(t2) + 1 = 0 + 1 = 1 clock cycles after task 2 starts. On the left, an actual schedule is shown along
with the dependency constraints and task delays.

QUESTION Is there a no-wait m-machine flow-shop schedule that satisfies the partial order ≺ and
meets the deadline D? A schedule satisfies ≺ means ti′(j

′) ≺ ti(j) iff Si′(ti′(j
′)) < Si(ti(j)). (It

is assumed that the precedence constraints are between tasks of two distinct jobs.)

3 Investigate the Complexity of the Formal Problem

Is Pipeline Scheduling Np-Complete? The existing NP-Complete problem I attempted to use for
the reduction is called minimum precdence constrainted sequencing with delays [1, 3]. Here
is the formal definition of that problem; see Figure 3 for an example instance and possible schedule.

INSTANCE Set T of tasks, a directed acyclic graph G = (T,E) defining precedence constraints for
the tasks, a positive integer D, and for each task an integer delay 0 ≤ d(t) ≤ D.

QUESTION Is there a one-processor schedule S for T that obeys the precedence constraints and the
delays, and the maximum S(t) ≤ D? The schedule S is an injective function S : T → Z+ such that,
for each edge 〈ti, tj〉 ∈ E, S(tj)− S(ti) > d(ti)⇔ S(tj) ≥ S(ti) + d(ti) + 1.

The reduction that I came up with was not polynomial: it attempted to map exponential magnitude
variables in the base instance to sets with an exponential number of elements in the created instance.
Nevertheless, the flawed “proof” revealed a link between the two problems. Here is the construction.

• Accept an instance of precedence constrainted sequencing: Set T of tasks, a directed
acyclic graph G = (T,E) defining precedence constraints for the tasks, a positive integer D, and
for each task an integer delay 0 ≤ d(t) ≤ D.

• Create an instance of pipeline scheduling

• J ← T , the first task of every job in the created instance corresponds to a task in the base
instance. The other tasks of the jobs have no function but to delay the finishing time m− 1 time
units after the first task of the last job in scheduled.

• m← max
t∈T

d(t) + 1; this means each job has m tasks and there are m pipeline stages.

5

• Set the deadline D′ of the created instance to D+(m− 1). After the first task of the last job

is scheduled on time t, the last task of the last job will be scheduled at time t+ (m− 1).

• For each edge 〈ti, tj〉 ∈ E

– Add td(ti+1)(i) ≺ t1(j) to the partial order defined in the constructed instance.

Notice that if there is an edge 〈ti, tj〉 ∈ E in the base instance, then S(tj) ≥ S(ti) + d(ti) + 1. By
setting the partial order td(ti+1)(i) ≺ t1(j) in the constructed instance, the instance also gains the
constraint that S(t1(j)) ≥ S(t1(i)) + d(ti) + 1. Therefore, the set of tasks {t1(j) : j ∈ J} has a set of
constraints that is functionally equivalent to the set of constraints for the set T of tasks in the base
instance; refer to Figure 1 and note the red arrow indicating precedence constraints between two tasks.
This means that the schedule for {t1(j) : j ∈ J} will be the same as the schedule for T . The pipeline
machine in the constructed instance runs for m − 1 more time units, which is why I set the deadline
D′ of the created instance to D + (m− 1).

The above proof is not correct, but suggests a small modification that can be made to the original
definition of pipeline scheduling, as the next section explains.

4 Redefine the Problem

I want to redefine pipeline scheduling to remove the sets of m tasks, but for the new definition to be
easier to prove NP-Complete and as close as possible to the original definition. The last section showed
that precedence constraints between tasks of jobs (in pipeline scheduling) could be constructed to
mimic the behavior of the precedence constraints between tasks with delays (in precedence con-
strainted sequencing). With this motivation, the new problem, pipeline sequencing, is given
as follows.

INSTANCE A set I of instructions, I = {I1, I2, ..., In}, m pipeline stages, G = (I, E), a weighted
directed acyclic graph (DAG), a weight function W : E → {1, 2, 3, ...,m− 1}, a deadline D.

QUESTION Is there a one-processor schedule σ : I → Z+
0 , such that σ is one-to-one,

• 〈Ij , Ik〉 ∈ E ⇔ σ(Ik) ≥ σ(Ij) +W (〈Ij , Ik〉) + 1

• For the maximum σ(I), does σ(I) + (m− 1) ≤ D?

We now have a DAG with weighted edges; the edges represent precedence constraints between instruc-
tions. Since there are m pipeline stages, the number of cycles that an instruction Ix has to wait for
output from an instruction Iy cannot exceed m− 1.

5 Prove the new Problem is NP-Complete

The proof will be by restriction.

• Consider the set S of instances of the pipeline sequencing problem from Section 4.

• Rename “Instructions” to “Tasks” and rename I to T , and the Ix to tx, for all x.

• Consider a subset S′ of S, such that for any instance in S′, all outgoing edges of any node t′ ∈ t

have equal weights. Since all of the weights on the outgoing edges of a node are the same, it
is possible to store those weights as a single weight associated with the node, rather than the
edges. Therefore, I will define a “delay” function d(tx) ← W (〈tx, ty〉), for all tx and any one of
its adjacent edges, say ty; delete the function W from the definition.

6

• Change the constraint 〈tj , tk〉 ∈ E ⇔ σ(tk) ≥ σ(tj) +W (〈tj , tk〉) + 1 to the constraint 〈tj , tk〉 ∈
E ⇔ σ(tk) ≥ σ(tj) + d(tj) + 1; the new constraint is identical to the old constraint.

• Restrict the subset of instances further by choosing only the ones where 0 ≤ d(t) ≤ D, for any
task t, and m = D. Note that this makes m redundant so I will remove it.

• I will show the (m − 1) term in the condition σ(t) + (m − 1) ≤ D in the original problem is
irrelevant. Notice the condition is equivalent to σ(t) ≤ D − (m− 1); set D′ ← D − (m− 1) and
change the condition to σ(t) ≤ D′; it is the same as the original problem, only the name of a
symbol has changed.

The new definition looks like the following.

INSTANCE A set T of tasks, T = {t1, t2, ..., tn}, G = (T,E), an unweighted directed acyclic graph
(DAG), a deadline D, and a delay function 0 ≤ d(t) ≤ D.

QUESTION Is there a one-processor schedule σ : T → Z+
0 , such that σ is one-to-one,

• 〈tj , tk〉 ∈ E ⇔ σ(tk) ≥ σ(tj) + d(tj) + 1

• For the maximum σ(t), does σ(t) ≤ D′?

Recall the precedence constrainted sequencing problem.

INSTANCE Set T of tasks, a directed acyclic graph G = (T,E) defining precedence constraints for
the tasks, a positive integer D, and for each task an integer delay 0 ≤ d(t) ≤ D.

QUESTION Is there a one-processor schedule S for T that obeys the precedence constraints and the
delays, and the maximum S(t) ≤ D? The schedule S is an injective function S : T → Z+ such that,
for each edge 〈ti, tj〉 ∈ E, S(tj)− S(ti) > d(ti)⇔ S(tj) ≥ S(ti) + d(ti) + 1.

A little inspection will reveal that these are really the same problems. This suggests a polynomial
tranformation to prove that precedence sequencing is NP-Complete. All that is necessary is to
accept an instance of precedence constrainted sequencing, and create the subset of instances
induced by the subproblem of precedence sequencing outlined above. Since the subproblem and
precedence constrainted sequencing are the same problem, one of the instances will be true if
and only if the other instance is true.

Now I prove that is pipeline sequencing in NP. An oracle can provide the starting time for each
of the instructions, and an algorithm simply needs to check the DAG to see if the schedule is valid.
For each edge in the DAG, the algorithm needs to check if the starting time of the dependant task is
large enough and comes after the the first task; it also needs to check the deadline is met by simply
checking the starting time of the last instruction.

6 Conclusion

The paper has show that the real-life problem of Instruction Scheduling on a Pipeline with

precedence constraints between pipeline stages of jobs is NP-Hard for an unbounded number
of processors. In practice, this result does not apply because most machines have a small (known)
number of pipeline stages. I was unable to show that the pipeline scheduling problem with

sets of m tasks was NP-Complete because the transformation was creating instances where m was
exponential. But, I do not think it is NP-Complete, because [3] showed that a problem that was
equivalent to sequencing with delays was NP-Complete for unbounded m. They had to introduce
extra constraints into the problem to get a bound on m.

7

References

[1] Pierluigi Crescenzi and Viggo Kann. A compendium of np optimization problems, 1998.

[2] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[3] John L. Hennessy and Thomas Gross. Postpass code optimization of pipeline constraints. ACM

Trans. Program. Lang. Syst., 5(3):422–448, 1983.

[4] Hans Röck. The three-machine no-wait flow shop is np-complete. J. ACM, 31(2):336–345, 1984.

8

