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Introduction
● We want to know how “different” two strings are

– What is the difference between “kitten” and 
“kiten”?   Answer: One “t”.

– “kiten” is closer to “kitten” than to “sitting”.

● Edit distance is a distance measure between 
two strings – A number that represents how 
dissimilar (far apart) two strings are

● If this number is small, then the two strings are  
similar



  

Application: Approximate Substring Matching

● Find approximate matches of a small string in a long text that 
can be segmented into substrings which we compare with the 
small string

● Given a text document, a spell-checker could segment the text 
into individual words, and compare each individual word to the 
words in a dictionary

● The spelling suggestions for a word in the text are words in 
the dictionary with the smallest distance to that word

● Molecular Biology – Find approximate occurrences of a smaller 
protein/DNA string in a longer protein/DNA string – Find 
proteins/genes with shared properties

● We can compare two long strings, but the complexity of the 
algorithm to compute the distance between s1 and s2 is O(|s1|*|
s2|) in both time and space



  

Problem

● Given two strings, a source and a target, find the minimum 
number of single-character edits to change source into target

● The answer to the above problem is a number that represents 
the distance between the target and the source

● What are the possible single-character edits?
●  Substitution – Change a character of source

● (change it to a character of target) ( “hello” → “yello” )

● Insertion – Insert a character into source
● (insert a character that is in target) (“yello” → “yellow”)

● Deletion – Delete a character from source
● (delete a character that is not in target)  (“nice” → “ice”) 



  

Creating subproblems
● Source = hello    Target = help

● Look at the last character of source

– It doesn't match the last character of target, so we have to use 
one of the 3 edit operations

● Option 1:  Substitution/Match. Change the “o” in source to a “p”.

– Source = hellp    Target = help

– Now they match at the cost of 1 edit operation

– The problem has been reduced to finding the edit distance between 
all but the last characters of source and target, i.e., hell and hel

– If this operation was the right thing to do, then the edit distance is 
just 1 + the edit distance between hell and hel

– What if the last characters already happened to match? Then we still 
reduce the problem in the same way, but it costs 0, since no edit. 
This is called a match. Above, we did a substitution.



  

Creating subproblems
● Source = hello    Target = help

● Option 2: Deletion. Delete the “o” from source.

– Source = hell    Target = help
– (This makes sense if source has too many characters; it 

eventually needs to have the same number of characters as 
target.)

– We have also reduced the problem at the cost of 1 
edit operation: source has one fewer characters. 
We didn't reduce the size of target this time.

– If this operation was the right thing to do, then the 
edit distance is just 1 + the edit distance between 
hell and help 



  

Creating subproblems
● Source = hello    Target = help

● Option 3: Insertion. Insert “p” to the end of source.

– Source = hellop    Target = help
– (This makes sense if source has too few characters. But now we made it 

too long, so we're going to need a deletion in the future)

– We made the last character of source match the last 
character of target

● That means we only need to compare hello and hel
● Note that we reduced the size of target, but not source – 

at the cost of 1 edit operation
– If this operation was the right thing to do, then the edit 

distance is just 1 + the edit distance between hello and hel



  

Creating subproblems
● We have 3 ways to recursively reduce 

the problem into a simpler problem
● Which one is the right way?

– It is the way that has the minimum 
value

● Recursively try all three ways and return 
the minimum



  

Base Cases

● When do we stop the recursion? Consider examples.
● Source = (empty)  Target = (empty)

– Edit distance = 0
● Source = (empty)   Target = “arbitrary”

– Edit distance = |”arbitrary”| ; we need 9 insertions
● Source = “arbitrary”   Target = (empty)

– Edit distance =  |”arbitrary”|; we need 9 deletions

● Base case
– If min( |source|, |target| ) == 0,

● then return max( |source|, |target| )



  

Notation
● Let D[i, j] be the edit distance between the first i characters of 

source and the first j characters of target 

● We use 1-based indexing and D[0,j] and D[i,0] correspond to 
source and target being empty strings, respectively

– Base cases: D[i, 0] = i and D[0, j] = j   for all i,j
● If we do a Substitution/Match...

– If Source[i] != Target[i], then D[i,j] = 1 + D[i-1, j-1]

– If Source[i] == Target[i], then D[i,j] = 0 + D[i-1, j-1]
● If we do a deletion...

–  then D[i,j] = 1 + D[i-1, j]
● If we do an insertion...

– then D[i,j] = 1 + D[i, j-1]



  

Recursive Solution – Pseudocode
● Function D[i, j]

– If min(i, j) == 0, then return max(i, j)

– If source[i] != target[i]
● SubMatchCost ← 1 + D[i-1, j-1]

– Else
● SubMatchCost ← 0 + D[i-1, j-1]

– DeletionCost ← 1 + D[i-1, j]

– InsertionCost ← 1 + D[i, j-1]

– Return min( SubMatchCost, DeletionCost,
    InsertionCost )



  

Time complexity
● The recurrence relation for the number of operations 

is

– T(n, m) = T(n-1, m-1) + T(n-1, m) + T(n, m-1) + 1

– T(0, m) = T(n, 0) = 1

● This is exponential in n and m...

● The reason it is so slow is that the same D[i,j] (and the 
same T(i,j)) are being computed repeatedly



  

Idea to improve time complexity
● Consider: How many unique calls D[i,j] are there? We have

– D[0, 0], D[1, 0], D[2, 0], …, D[n, 0]

– D[0, 1], D[1, 1], D[2, 1], …, D[n, 1]

….
– D[0, m], D[1, m], D[2, m], …, T(n, m]

● There are (n+1)*(m+1) unique calls T(i,j)

● Idea:  Build a (n+1)*(m+1) integer array, M, where M[i,j] stores the 
result of D[i,j]

– Modify our recursive function D[i,j] so that the first thing it does 
is check if the result is already there in M[i,j] – If so, just return 
M[i,j]

– If it is not there, compute it recursively. But before returning, 
store the result in M[i,j]



  

Top-down vs. Bottom-up
● The use of the table M to store the results of the recursive calls is called 

memoization and it is a form of dynamic programming
● This reduces the time complexity to O(n*m) and our space complexity is 

O(n*m) for the table M
● This is a “top-down” solution – we start with the big problem and recursively 

break it down into smaller problems
● However, notice that the first problems to be solved are the smallest sub-

problems, i.e., the base cases, and then the next smallest ones, etc.
● Using that observation, we can construct a solution where we iteratively first 

solve the smallest sub-problems, then the next smallest ones, etc. – this is 
called a “bottom-up” solution

● The “bottom-up” solution will fill out the table M with the smallest values first, 
just as the “top-down” solution does. (We'll actually call it D, not M.)

● Note that the “bottom-up” solution is not called memoization



  

Bottom-up: D as a table instead of a function
● Source = sitting  (7 chars)    Target = kitten  (6 chars)
● We need an (7+1) by (6+1) table, D.
● We can fill out the base cases right away. D[i, 0] = i and 

D[0, j] = j for all i,j
D[4,0] is the edit 
distance between sitt 
and (empty string).

To change sitt to 
(empty string), we do 4 
deletions.

So the edit distance is 
4.

D[6,7] is the edit distance
Between sitting and kitten



  

Use the recursive solution to fill out the table
● Fill out the table iteratively until we 

reach D[7,6], the solution.

● To compute D[i,j], we use the 
recursive solution – but instead of 
making recursive calls, we look up 
the (already computed) values in the 
table

● In what order should we visit the 
cells? Any order that allows 
guarantees we have already 
computed all the values we need to 
compute D[i,j]

● What values does D[i,j] need? It needs 
D[i-1, j-1], D[i-1, j] and D[i, j-1]

● With respect to D[i, j], these are the 
cells: left&up, up, left

● We will fill it out row-by-row, 
starting from the top row, and 
each row from left-to-right



  

Use the recursive solution to fill out the table

D[i,j] = min( 1 + 0, 1 + 1, 1 + 1 ) = 1.

We picked the first one, match/sub.
That means we changed the “s” to a “k”

● What is the recursive solution 
D[i,j]?

● Remember, it depends on if the last 
characters of the two prefixes of 
source and target are equal

● In the case of D[1,1] they are not, 
so we have

● D[i,j] = min( 1 + D[i-1, j-1],
                   1 + D[i-1, j],
                   1+ D[i, j-1] ) 

● If those last characters were equal, 
then we would be adding a 0 
instead of a 1 in the first argument 
of min (in bold)

Match/sub
Deletion
Insertion



  

The complete table – Another example

● D[2,3] = 2, the edit distance 
between si and kit

● How did we get this?

● Look left, D[i, j-1] = 1.
● 1 + D[i, j-1] = 2 is the total 

number of edits if we insert 
t to the end of si

● Look up, D[i-1, j] = 3.
● 1 + D[i-1, j] = 4 is the total 

number of edits if we 
delete i from the end of si

● Look left&up, D[i-1,j-1] = 2.
● 1 + D[i-1, j-1] = 3 is the 

total number of edits if we 
change the i at the end of 
si to a t

That means to change si to kit, the best thing to
do is insert t to the end of si

Because t != i



  

Reconstructing the sequence of edits

● Start from lower-right cell, 
D[7,6]

● What edit did we make to get 
there?

● We added 1 + 2 = 3, and so we 
came from one cell above.

● That means we deleted g from 
sittting

● So we have sittin and kitten

● It cost us 1 edit

So far...

S  I  T  T  I  N G
                 D
S  I  T  T  I  N



  

Reconstructing the sequence of edits

● How did we get to D[6,6]? The 
last characters match, so we 
added 0 + 2 = 2, and we came 
from up&left.

● We didn't make an edit, but now 
the problem is reduced to sitti 
and kitte in cell D[5,5]

So far...

S  I  T  T  I  N G
               M D
S  I  T  T  I  N



  

Reconstructing the sequence of edits

● We are at D[5,5] with sitti and 
kitte

● The last characters don't match, 
and we added 1 + 1 = 2, and we 
came from up&left

● That means we changed the i in 
sitti to an e

● It cost us 1 edit

● We have reduced the problem 
to sitt and kitt

So far...

S  I  T  T  I  N G
            S  M D
S  I  T  T  E  N



  

Reconstructing the sequence of edits

● We are at D[4,4] with sitt and 
kitt

● The last characters  match, and 
we added 0 + 1 = 1, and we 
came from up&left

● That means we matched the the 
last characters and we didn't 
make an edit

● We have reduced the problem 
to sit and kit

So far...

S  I  T  T  I  N G
         M  S  M D
S  I  T  T  E  N



  

Reconstructing the sequence of edits

● We are at D[3,3] with sit and kit
● The last characters  match, and 

we added 0 + 1 = 1, and we 
came from up&left

● That means we matched the the 
last characters and we didn't 
make an edit

● We have reduced the problem 
to si and ki

So far...

S  I  T  T  I  N G
      M  M  S  M D
S  I  T  T  E  N



  

Reconstructing the sequence of edits

● We are at D[2,2] with si and ki
● The last characters  match, and 

we added 0 + 1 = 1, and we 
came from up&left

● That means we matched the the 
last characters and we didn't 
make an edit

● We have reduced the problem 
to s and k

So far...

S  I  T  T  I  N G
   M  M  M  S  M D
S  I  T  T  E  N



  

Reconstructing the sequence of edits

● We are at D[1,1] with s and k
● The last characters don't  

match, and we added 1 + 0 = 1, 
and we came from up&left

● That means we changed the s 
to a k

● It cost us 1 edit operation

● We have reduced the problem 
to (empty string) and (empty 
string) at D[0,0] and we are 
done

So far...

S  I  T  T  I  N G
S  M  M  M  S  M D
K  I  T  T  E  N
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