

Edit Distance

Prepared by Michael Gabilondo
UCF, COP 3503 Recitation

November 20, 2013

Introduction
● We want to know how “different” two strings are

– What is the difference between “kitten” and
“kiten”? Answer: One “t”.

– “kiten” is closer to “kitten” than to “sitting”.

● Edit distance is a distance measure between
two strings – A number that represents how
dissimilar (far apart) two strings are

● If this number is small, then the two strings are
similar

Application: Approximate Substring Matching

● Find approximate matches of a small string in a long text that
can be segmented into substrings which we compare with the
small string

● Given a text document, a spell-checker could segment the text
into individual words, and compare each individual word to the
words in a dictionary

● The spelling suggestions for a word in the text are words in
the dictionary with the smallest distance to that word

● Molecular Biology – Find approximate occurrences of a smaller
protein/DNA string in a longer protein/DNA string – Find
proteins/genes with shared properties

● We can compare two long strings, but the complexity of the
algorithm to compute the distance between s1 and s2 is O(|s1|*|
s2|) in both time and space

Problem

● Given two strings, a source and a target, find the minimum
number of single-character edits to change source into target

● The answer to the above problem is a number that represents
the distance between the target and the source

● What are the possible single-character edits?
● Substitution – Change a character of source

● (change it to a character of target) (“hello” → “yello”)

● Insertion – Insert a character into source
● (insert a character that is in target) (“yello” → “yellow”)

● Deletion – Delete a character from source
● (delete a character that is not in target) (“nice” → “ice”)

Creating subproblems
● Source = hello Target = help

● Look at the last character of source

– It doesn't match the last character of target, so we have to use
one of the 3 edit operations

● Option 1: Substitution/Match. Change the “o” in source to a “p”.

– Source = hellp Target = help

– Now they match at the cost of 1 edit operation

– The problem has been reduced to finding the edit distance between
all but the last characters of source and target, i.e., hell and hel

– If this operation was the right thing to do, then the edit distance is
just 1 + the edit distance between hell and hel

– What if the last characters already happened to match? Then we still
reduce the problem in the same way, but it costs 0, since no edit.
This is called a match. Above, we did a substitution.

Creating subproblems
● Source = hello Target = help

● Option 2: Deletion. Delete the “o” from source.

– Source = hell Target = help
– (This makes sense if source has too many characters; it

eventually needs to have the same number of characters as
target.)

– We have also reduced the problem at the cost of 1
edit operation: source has one fewer characters.
We didn't reduce the size of target this time.

– If this operation was the right thing to do, then the
edit distance is just 1 + the edit distance between
hell and help

Creating subproblems
● Source = hello Target = help

● Option 3: Insertion. Insert “p” to the end of source.

– Source = hellop Target = help
– (This makes sense if source has too few characters. But now we made it

too long, so we're going to need a deletion in the future)

– We made the last character of source match the last
character of target

● That means we only need to compare hello and hel
● Note that we reduced the size of target, but not source –

at the cost of 1 edit operation
– If this operation was the right thing to do, then the edit

distance is just 1 + the edit distance between hello and hel

Creating subproblems
● We have 3 ways to recursively reduce

the problem into a simpler problem
● Which one is the right way?

– It is the way that has the minimum
value

● Recursively try all three ways and return
the minimum

Base Cases

● When do we stop the recursion? Consider examples.
● Source = (empty) Target = (empty)

– Edit distance = 0
● Source = (empty) Target = “arbitrary”

– Edit distance = |”arbitrary”| ; we need 9 insertions
● Source = “arbitrary” Target = (empty)

– Edit distance = |”arbitrary”|; we need 9 deletions

● Base case
– If min(|source|, |target|) == 0,

● then return max(|source|, |target|)

Notation
● Let D[i, j] be the edit distance between the first i characters of

source and the first j characters of target

● We use 1-based indexing and D[0,j] and D[i,0] correspond to
source and target being empty strings, respectively

– Base cases: D[i, 0] = i and D[0, j] = j for all i,j
● If we do a Substitution/Match...

– If Source[i] != Target[i], then D[i,j] = 1 + D[i-1, j-1]

– If Source[i] == Target[i], then D[i,j] = 0 + D[i-1, j-1]
● If we do a deletion...

– then D[i,j] = 1 + D[i-1, j]
● If we do an insertion...

– then D[i,j] = 1 + D[i, j-1]

Recursive Solution – Pseudocode
● Function D[i, j]

– If min(i, j) == 0, then return max(i, j)

– If source[i] != target[i]
● SubMatchCost ← 1 + D[i-1, j-1]

– Else
● SubMatchCost ← 0 + D[i-1, j-1]

– DeletionCost ← 1 + D[i-1, j]

– InsertionCost ← 1 + D[i, j-1]

– Return min(SubMatchCost, DeletionCost,
 InsertionCost)

Time complexity
● The recurrence relation for the number of operations

is

– T(n, m) = T(n-1, m-1) + T(n-1, m) + T(n, m-1) + 1

– T(0, m) = T(n, 0) = 1

● This is exponential in n and m...

● The reason it is so slow is that the same D[i,j] (and the
same T(i,j)) are being computed repeatedly

Idea to improve time complexity
● Consider: How many unique calls D[i,j] are there? We have

– D[0, 0], D[1, 0], D[2, 0], …, D[n, 0]

– D[0, 1], D[1, 1], D[2, 1], …, D[n, 1]

….
– D[0, m], D[1, m], D[2, m], …, T(n, m]

● There are (n+1)*(m+1) unique calls T(i,j)

● Idea: Build a (n+1)*(m+1) integer array, M, where M[i,j] stores the
result of D[i,j]

– Modify our recursive function D[i,j] so that the first thing it does
is check if the result is already there in M[i,j] – If so, just return
M[i,j]

– If it is not there, compute it recursively. But before returning,
store the result in M[i,j]

Top-down vs. Bottom-up
● The use of the table M to store the results of the recursive calls is called

memoization and it is a form of dynamic programming
● This reduces the time complexity to O(n*m) and our space complexity is

O(n*m) for the table M
● This is a “top-down” solution – we start with the big problem and recursively

break it down into smaller problems
● However, notice that the first problems to be solved are the smallest sub-

problems, i.e., the base cases, and then the next smallest ones, etc.
● Using that observation, we can construct a solution where we iteratively first

solve the smallest sub-problems, then the next smallest ones, etc. – this is
called a “bottom-up” solution

● The “bottom-up” solution will fill out the table M with the smallest values first,
just as the “top-down” solution does. (We'll actually call it D, not M.)

● Note that the “bottom-up” solution is not called memoization

Bottom-up: D as a table instead of a function
● Source = sitting (7 chars) Target = kitten (6 chars)
● We need an (7+1) by (6+1) table, D.
● We can fill out the base cases right away. D[i, 0] = i and

D[0, j] = j for all i,j
D[4,0] is the edit
distance between sitt
and (empty string).

To change sitt to
(empty string), we do 4
deletions.

So the edit distance is
4.

D[6,7] is the edit distance
Between sitting and kitten

Use the recursive solution to fill out the table
● Fill out the table iteratively until we

reach D[7,6], the solution.

● To compute D[i,j], we use the
recursive solution – but instead of
making recursive calls, we look up
the (already computed) values in the
table

● In what order should we visit the
cells? Any order that allows
guarantees we have already
computed all the values we need to
compute D[i,j]

● What values does D[i,j] need? It needs
D[i-1, j-1], D[i-1, j] and D[i, j-1]

● With respect to D[i, j], these are the
cells: left&up, up, left

● We will fill it out row-by-row,
starting from the top row, and
each row from left-to-right

Use the recursive solution to fill out the table

D[i,j] = min(1 + 0, 1 + 1, 1 + 1) = 1.

We picked the first one, match/sub.
That means we changed the “s” to a “k”

● What is the recursive solution
D[i,j]?

● Remember, it depends on if the last
characters of the two prefixes of
source and target are equal

● In the case of D[1,1] they are not,
so we have

● D[i,j] = min(1 + D[i-1, j-1],
 1 + D[i-1, j],
 1+ D[i, j-1])

● If those last characters were equal,
then we would be adding a 0
instead of a 1 in the first argument
of min (in bold)

Match/sub
Deletion
Insertion

The complete table – Another example

● D[2,3] = 2, the edit distance
between si and kit

● How did we get this?

● Look left, D[i, j-1] = 1.
● 1 + D[i, j-1] = 2 is the total

number of edits if we insert
t to the end of si

● Look up, D[i-1, j] = 3.
● 1 + D[i-1, j] = 4 is the total

number of edits if we
delete i from the end of si

● Look left&up, D[i-1,j-1] = 2.
● 1 + D[i-1, j-1] = 3 is the

total number of edits if we
change the i at the end of
si to a t

That means to change si to kit, the best thing to
do is insert t to the end of si

Because t != i

Reconstructing the sequence of edits

● Start from lower-right cell,
D[7,6]

● What edit did we make to get
there?

● We added 1 + 2 = 3, and so we
came from one cell above.

● That means we deleted g from
sittting

● So we have sittin and kitten

● It cost us 1 edit

So far...

S I T T I N G
 D
S I T T I N

Reconstructing the sequence of edits

● How did we get to D[6,6]? The
last characters match, so we
added 0 + 2 = 2, and we came
from up&left.

● We didn't make an edit, but now
the problem is reduced to sitti
and kitte in cell D[5,5]

So far...

S I T T I N G
 M D
S I T T I N

Reconstructing the sequence of edits

● We are at D[5,5] with sitti and
kitte

● The last characters don't match,
and we added 1 + 1 = 2, and we
came from up&left

● That means we changed the i in
sitti to an e

● It cost us 1 edit

● We have reduced the problem
to sitt and kitt

So far...

S I T T I N G
 S M D
S I T T E N

Reconstructing the sequence of edits

● We are at D[4,4] with sitt and
kitt

● The last characters match, and
we added 0 + 1 = 1, and we
came from up&left

● That means we matched the the
last characters and we didn't
make an edit

● We have reduced the problem
to sit and kit

So far...

S I T T I N G
 M S M D
S I T T E N

Reconstructing the sequence of edits

● We are at D[3,3] with sit and kit
● The last characters match, and

we added 0 + 1 = 1, and we
came from up&left

● That means we matched the the
last characters and we didn't
make an edit

● We have reduced the problem
to si and ki

So far...

S I T T I N G
 M M S M D
S I T T E N

Reconstructing the sequence of edits

● We are at D[2,2] with si and ki
● The last characters match, and

we added 0 + 1 = 1, and we
came from up&left

● That means we matched the the
last characters and we didn't
make an edit

● We have reduced the problem
to s and k

So far...

S I T T I N G
 M M M S M D
S I T T E N

Reconstructing the sequence of edits

● We are at D[1,1] with s and k
● The last characters don't

match, and we added 1 + 0 = 1,
and we came from up&left

● That means we changed the s
to a k

● It cost us 1 edit operation

● We have reduced the problem
to (empty string) and (empty
string) at D[0,0] and we are
done

So far...

S I T T I N G
S M M M S M D
K I T T E N

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

