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Abstract
This paper summarizes and discusses five different papers on knowledge-
lean word sense disambiguation. Four of the papers have to do with
Word Sense Induction (WSI), which is word sense disambiguation ex-
cept with the additional task of discovering word senses automatically
without relying on an external lexicon. The other paper is an example
of word sense disambiguation that uses very little knowledge.

1 Introduction

Word Sense Disambiguation (WSD) is the task of selecting the correct sense
of a polysemous word, usually with respect to a predefined set of senses from
a dictionary. Word Sense Discrimination or Word Sense Induction (WSI)
is a knowledge lean approach to disambiguation. These approaches differ
from traditional word sense disambiguation in that they determine the set
of senses of a polysemous word automatically from the unannotated training
corpus. Therefore, they do not rely on an external lexicon and they also typ-
ically do not rely on other external sources of manually crafted knowledge.
Potentially, one advantage of this is that it may discover very domain specific
usages of words that may not be listed in available lexicons. The following
sections summarize and discuss (Schiitze, 1998), (Purandare and Pedersen,
2004), (Bordag, 2006) and (Pedersen and Bruce, 1998), which are different
attempts at word sense discrimination or WSI, as well as (Yarowsky, 1995)
which is WSD but relies on very little knowledge.

2 Schiitze (1998)

Schiitze divides the task of word sense disambiguation into two subtasks:
word sense discrimination and sense labeling. In word sense discrimina-



tion, different usages of some polysemous word w are divided into a small
number of clusters that each represent a sense of w. Sense labeling is the
task of mapping senses from an outside knowledge source, such as WordNet
(Fellbaum, 1998), to the different clusters. Because they carry out word
sense discrimination without reference to any external lexicon, these sense
clusters may not map perfectly to any particular set of predefined senses.
Therefore, their paper only concentrates on word sense discrimination and
not the automation of sense labeling: clusters are labeled manually for eval-
uation. They concluded that their method, in most cases, it performs above
the baseline of labeling each word with the most common sense. They also
describe a possible application in Information Retrieval (IR) of comput-
ing document-query similarity, for which reference to external senses is not
needed.

Their algorithm is for word sense discrimination is called context-group
discrimination. It is completely unsupervised in that the training corpus is
unannotated and no lexicon is needed. The clusters created during context-
group discrimination are called context-groups and the categorization of a
usage of w in context ¢ into one of the context-groups depends on the context
vector of ¢, which is the centroid of the word vectors of the words in context c.
Word vectors are high dimensional vectors in which the different dimensions
represent cooccurrence frequencies with other words in the corpus; that is,
given word vector w = (fuw,, fwgs - fwn)s fuw;, for 1 < i < n, represents
the frequency with which w cooccurred with w;. The centroid vectors of
the context-groups, called sense vectors, represent different senses of w. To
disambiguate words from a test corpus, a context vector is created for the
word and it is assigned assigned to the cluster whose sense vector the context
vector is closest to.

A context vector v. is a representation of the local context ¢ of some
word w. It represents the features of the local context; in their paper, the
features are the word vectors of the words around w. It is useful to make
the distinction between second order context vectors and first order context
vectors. The description of the context vectors above are second order. If
the features were simply the words around w, rather than the word vectors
of the words around w, then the context vector would be first order. A word
vector of w; can be thought of as the sum of the first order context vectors
of w;. The second order context vectors are therefore the sum of the sums
of first order context vectors of the words in the local context. Second order
context vectors have the effect of enriching the information about the local
context by taking into account additional knowledge of where the words
around w tend to be used.



The set of context vectors {ve,, Vey, ..., Ve, } for some word w appearing in
contexts ¢y, co, ..., ¢y is divided into a small number of predetermined clus-
ters. This is done by using group-average agglomerative clustering (GAAC)
and Expectation Mazimization (EM). EM is locally optimal in that it guar-
antees that the centroid vector of each cluster is an optimal representative
of the context vectors in that cluster. However, a bad choice of starting
vectors for the algorithm will lead to a set of clusters that is not globally
optimal. Therefore, GAAC is used to find a good starting point.

In agglomerative clustering, each element is initially in its own cluster.
Clusters are then iteratively merged according to a goodness criterion func-
tion until some predetermined number of clusters has been reached. GAAC
uses a criterion that is a combination of single-link and complete-link clus-
tering. At each iteration, single-link clustering merges clusters Cy and Cs if
there exists elements e; € C7 and es € (s such that for any other two ele-
ments e; € Cy, and e; € C,,, distance(eq,ez) < distance(e;, e;). Complete-
link clustering merges two clusters Cy and Cs whose merger Cy UC5 results in
the smallest possible diameter if any possible merger. Single-link clustering
tends to result in elongated clusters and complete-link clustering is strongly
affected by outlying elements, as well as having a high time complexity.
GAAC is a hybrid of these two methods.

The choice of clustering depends on the representation of the context
vectors. Context vectors are thousands of dimensions, since their dimen-
sions represent cooccurrence frequencies with other words in the corpus.
And although word vectors can be sparse, context vectors are not because
they are the sum of word vectors. Therefore, in addition to using the repre-
sentation of context vectors as described previously, they also use Singular
Value Decomposition (SVD) to reduce the dimensionality of the vector space
where the context vectors exist, which is called Word Space; in this case,
the dimensionality of the vectors in Word Space were reduced to 100. This
dimensionality reduction has the effect of projecting nearby vectors closer to
each other and far away vectors further away from each other. Therefore, in
addition to the convenience of working with fewer dimensions, using SVD-
reduced context vectors can potentially lead to more accurate clustering than
word cooccurrence context vectors.

Several experiments were carried out during the evaluation by varying
a number of parameters: the choice of what words the dimensions of the
word vectors should represent (local vs. global feature selection), local fea-
ture selection according to frequency vs. x? distribution, term cooccurrence
context vectors vs. SVD-reduced context vectors and the number of clusters
to divide the Word Space into (2 or 10). Local feature selection focuses on



the context of the ambiguous words and global feature selections chooses
the n most frequent words in the corpus.

Twenty ambiguous words were chosen for disambiguation and each word
was divided up into two senses, which were chosen by Schiitze. There was no
distinction between different parts of speech; for example, the two senses of
train were the verb sense as in the sentence, “she will train to become a chef,”
and the noun sense as in the sentence, “the train got derailed.” The sense
labeling task was also carried out manually; that is, the author hand labeled
the dictionary senses that he thought each cluster corresponded to. For the
experiments where ten clusters were created, accuracy was only evaluated
for two senses; the instances of the ambiguous words in the training set
were also labeled so that they were assigned to a particular cluster, so these
experiments were not unsupervised.

The best results came from using SVD, global feature selections and
ten clusters at 90.6% average accuracy, although it achieved 89.7% average
accuracy using the same setup using two clusters. The average baseline
of assigning the most common sense was 61.2%. However, below baseline
performance occurred in a number of cases.

These experiments evaluate how well the clusters correspond to the dic-
tionary senses chosen by Schiitze, even though the algorithm had no knowl-
edge of such senses beforehand. Therefore, it has no guidance of what the
sense groupings should be, other than the contexts. More specifically, these
experiments test the following hypothesis:

Conteztual Hypothesis for Senses: Two occurrences of an am-
biguous word belong to the same sense to the extent that their
contextual representations are similar. (Schiitze, 1998)

The Contextual Hypothesis for Senses depends heavily on the choice
of features for the contextual representation; in this paper, local context
was treated as a bag of words, without reference to syntactic dependencies,
semantics, parts of speech or even word order. Better partitioning of the
word space could probably be achieved by taking more features into account.

It is doubtful that an algorithm that does word sense discrimination
without being guided by a set of senses will be able to create clusters that
map correctly to the senses in any existing lexicon (i.e., solve the sense la-
beling problem). Therefore, this algorithm cannot be used for any problem
that requires a mapping to senses in a lexicon; for example, word sense dis-
ambiguation can benefit machine translation only if the system knows which
sense the word corresponds to so that it can choose the correct translation.



However, machine translation using this method might still be possible if
cross-language correspondences between clusters could be created.

However, context-group discrimination can be used for problems where a
mapping to external senses is not needed. One such problem they present is
document-query similarity in Information Retrieval (IR): determining which
documents a search engine should return based on how similar the query
is to the documents. In a previous work (Schiitze and Pedersen, 1995),
they summarize an experiment using a similar system where documents and
queries were represented as vectors and words were disambiguated using
context-group discrimination. Documents that contained senses of the word
different from the one specified in the query were filtered out.

3 Pedersen and Bruce (1998)

The goal of (Pedersen and Bruce, 1998) is the same as that of (Schiitze,
1998): to attribute a sense group to each instance of some target polysemous
word, where these sense groups are automatically inferred from unannotated
corpora.

Given a set S of sentences that contain target polysemous word w, the al-
gorithm converts each sentence s € S into a feature vector (Fy, Fa, ..., Fy,, .S),
where F;, 1 < i < n, represents a feature of the local context of w and S is
the sense group that w belongs to. They use the Naive Bayes model, which
when applied to this task defines the joint probability of observing features
Fy, Fs, ..., F, with sense S as

P(EL, By, oy o, S) = P(S)P(FL|S)P(F3|S)...P(F,|S) (1)

Given the parameters of the model P(S) and P(F;|S), it is possible to cal-
culate the sufficient statistics: the frequencies with which F; was observed
with S. Conversely, given the sufficient statistics, it is possible to calculate
the model parameters.

They test two different algorithms to estimate the parameters: Estimation-
Maximization (EM) for Naive Bayes and Gibbs Sampling. These algorithms
are used to impute a sense group for the missing data and estimate the pa-
rameters. It appears that they attempt to find a sense group such that
p(F;|S) is maximized. EM has an estimation step (E-step) and a maxi-
mization step (M-step). Initially, p(F;|S) is initialized to a random value.
Then, the E-step calculates the expected values of the sufficient statis-
tics count(F;, S) based on the current model parameter estimates p(S) and
p(F;|S). Following this, the M-step calculates the parameter estimates based



on the current values of the sufficient statistics. The E-steps and M-steps
continue to alternate until the parameter estimates converge. This algo-
rithm can converge to a local maxima when the likelihood function is not
well approximated by the normal distribution.

Gibbs sampling is the other method they used to estimate the parame-
ters, which generates random samples from a probability distribution when
it is difficult to sample directly from that distribution. The sampler gener-
ates chains of values for the missing senses S and model parameters p(F;|S)
in an iterative process, and these chains of values will eventually converge.

There different feature sets A, B and C were defined for each word to be
disambiguated and the two different algorithms EM and Gibbs were tested
for each feature set. Parts of speech were not mixed for the different senses of
each word, but nouns, adjectives and verbs were disambiguated. All words
were divided up into two or three senses. The data in the training corpus was
sense-tagged, but the senses were only used for automating the evaluation
and not for learning. The results of the experiments, like in (Schiitze, 1998),
determine how well the automatically created sense groups line up with the
predetermined sense distinctions for each word.

They record several different types of features of the local context. Fea-
ture M represents the morphology of the ambiguous word. For nouns M
can only have two different values, which indicate whether the noun is plu-
ral or singular; for verbs, M indicates the tense and can have up to seven
possible values. The features PL; and PR;, i = 1 or 2, represents the part
of speech of the word 4 positions to the left or to the right, respectively, of
the ambiguous word; there are five possible values for these features. Fea-
tures Cj, i = 1, 2 or 3, can have two values and represent whether the it"
most frequent word in the corpus occurs in the sentence being processed.
Features UL;, i = 1 or 2, represent the " word occurring to the left or
to the right, respectively, of the ambiguous word. UL; features can only
take on 21 possible values: 19 of the most frequent words that occur in
that fixed position in all sentences that contain the ambiguous word, value
(none) indicates that the word in position ¢ is not among the 19 words, or
value (null) that indicates position i is out of sentence bounds. Features
CL; and CL;, i = 1, can take on the same 21 different values as features
U L; and indicate the content word occurring i positions to the left or to the
right of the ambiguous word, respectively.

Feature set A combines features M, PLy, PLy, PRy, PRy, C1, Cy and
C3. Feature set B combines features M, ULy, ULy, UR; and URy. Feature
set C' combines features M, PLy, PLs, PRy, PRy, C Ly and CR5. For adjec-
tives and verbs, both algorithms and all feature sets achieved below baseline



accuracy, and for nouns both algorithms and all feature sets achieved above
baseline accuracy, but results were still in the low 60% range.

Compared to (Schiitze, 1998), these algorithm seem to have faired worse,
although the experiments were different and so a fair comparison cannot be
made. The collocation features in this algorithm were first-order; that is, it
simply recorded whether or not certain words coccourred.

4 Yarowsky (1995)

There is an unsupervised noun sense disambiguation algorithm by (Yarowsky,
1995) that trains on unannotated corpora and is able to map automatically
to course-grained dictionary senses. The fact that it is able to solve the
sense-labeling problem is what makes this algorithm disambiguation rather
than discrimination.

A small amount of knowledge is needed to bootstrap the algorithm. For
each sense of each noun to be disambiguated, it requires some seed collocate
terms. Seed terms are words that tend to collocate with a particular sense
of the noun; for example, we would expect that the seed collocate term
manufacturing cooccurs with the industrial sense of plant more often than
it does with the living-being sense of plant. The algorithm finds all sentences
that contain both the ambiguous word and one of the seed collocate terms,
and classifies the sense of the ambiguous word according to the sense that
the seed term is associated with. Then, it attempts to find new collocate
terms based on the previous sentences to repeat the process and classify
new senses. These seed terms may be manually entered or automatically
discovered using dictionary definitions by choosing words that appear with
greater frequency relative to the rest of the dictionary.

There is an underlying assumption stating that given any particular
collocation, such as harvest plants or manufacturing within a few words from
plant, the sense of the noun will almost always be the same. This mostly-
reliable heuristic is called One Sense per Collocation. Another heuristic
that the paper uses is One Sense per Discourse; it states that if we have a
discourse that has many uses of a particular sense of a noun that we have
a high certainty about, then the other uses of that noun in that discourse
probably have that same sense. Note that one example of One Sense per
Discourse not helping is the collocation green plants, where green is used to
mean environmentally friendly.

The paper demonstrates the algorithm on the two primary senses of the
noun plant: the manufacturing sense and the flora sense. First, using an



untagged corpus, it identifies all local contexts containing plant and stores
them in an initial training set. The ambiguous terms in the portion of
the sentences that contain one of the seed terms are tagged with the sense
associated with that seed term.

A decision-list algorithm uses the contexts of the initial tagged homo-
graphs to discover new collocate terms that reliably partition the tagged
data into the two senses. Syntactic information is also recorded about the
new collocate terms to differentiate between cases like pesticide plant and
plant pesticide. The collocations are also ranked by how characteristic they
are of a given sense.

In a similar fashion to the above, using the newly learned collocate terms,
the decision-list looks for more sentences in the untagged portion of the
training set and tags them with the correct sense. These sentences contain
more collocations, which it learns to associate with a particular sense in the
same way as previously described.

Optionally, it exploits the tendency of human language to feature only
one noun homograph sense per discourse. For example, if plant has been
tagged four times as the manufacturing sense in a discourse, and if a fifth
usage of plant is untagged or has been tagged as the flora sense with lower
confidence, then the former label will be set to the manufacturing sense.
However, given a slightly different scenario where it is too close to tell
which is the dominant sense, all five plant instances would have their la-
bels removed. This helps prevent incorrect evidence being attributed to a
particular sense and skewing the algorithm.

The decision-list algorithm and the optional one-sense-per-discourse con-
straint are repeated iteratively until the algorithm converges on a stable
residual (unlabeled) set. Note that the decision-list algorithm uses only the
single most reliable piece of evidence (collocated term plus syntactic fea-
tures) which it associates with a given sense, and not a combination of of
different pieces of evidence. Therefore, the correctness of a given sense label
hinges on the correctness of a particular collocate term. If newly acquired
evidence discredits the correctness of said term, that term will have its label
removed; it will usually be relabeled in future iterations and associated with
more distinguishing evidence. At this point, the algorithm may be used to
automatically tag new sentences with one of the two senses of plant.

The algorithm was trained on a 460 million word corpus. It achieved
98.6% accuracy for plant and slightly lower for less distinguished terms, such
as 93.6% for space in the volume and outer-space senses and 93.9% for drug
in the medicine and recreational senses. The results were also compared to
a decision-list supervised training algorithm, which were slightly lower.



This paper shows that unsupervised nouns sense disambiguation can be
done with very high accuracy. However, it would be interesting to see how
the algorithm would perform when trying to distinguishing between more
than two senses or senses that are not as well distinguished. For example,
bank can mean a physical building, the funds held by a gambling house or
dealer, a money box or an institution. All of these are closely associated
with the concept of money. It might have some trouble with this, as it did
have lower accuracy when trying to disambiguate between the two senses of
drug; these senses of drug are problematic even for humans.

5 Bordag (2006)

(Bordag, 2006) introduces a triplet-based clustering WSI algorithm that is
based on the one sense per collocation heuristic of (Yarowsky, 1995) and uses
an automatic pseudoword evaluation method, similar to (Schiitze, 1998).
The idea behind the algorithm is that given a word w and its local context, w
and two of its content collocate terms, w; and w;, together tend to uniquely
identify some sense or topic. Let v,, denote the set of the 200 most significant
cooccurrences of w in the corpus. Then for all possible triplets (w,w;,w;),
K = vy Ny, Ny, is a feature of the local context of w. All such K’s for all
instances of w are clustered and the clusters represent the different senses
of w.

As an example, consider the sentence “NASA wants a space mission to
Mars,” where space is the target word, and consider the particular triplet
(space, MARS, NASA). One of the features of this local context would be
K = VgpaceMUMARSNUN AS A, Which might look something like (launch, probe,
cosmonaut, ...). Similar K’s would be created for the other combinations of
triplets in this and all local contexts where space appears. Ideally, the K’s
for the instances where space is being used in the outer space term will be
clustered into a different set from the K'’s for the instances where space is
being used in the geometrical sense.

This paper pointed out that there are two types of ambiguity: syntactic
and semantic. The main syntactic ambiguity is the ambiguity between the
different parts of speech: nouns, verbs, adjectives, adverbs, etc. Semantic
ambiguity is the ambiguity between different word meanings. Therefore, it
is possible that clusters which make the distinctions between syntactic or
semantic ambiguity will get created. They hypothesized that using shorter
windows would lead to words being clustered more by syntactic ambiguity
and larger window sizes would lead more to semantic ambiguity. Their



results were inconclusive because they got very bad results that they did
not go into detail about for using short window sizes; they suggested this
could be due to data sparseness.

The evaluation technique used by this paper as well partially by (Schiitze,
1998) is pseudoword evaluation. This is a method of choosing two words
from the corpus, say banana and door, and creating a new pseudoword
bananadoor. This pseudoword can be interpreted as having two senses:
banana and door. All instances of both banana and door are then replaced
by bananadoor in the corpus. The WSI algorithm is run and a number of
sense clusters are created for banandoor; note that in general, it is possible
that more than two sense clusters are created if one or both of the words
making up the pseudoword is polysemous but in this case banana and door
are assumed to be monosemous. For example, we would expect that a
cluster containing mostly the contexts of door is created (Cgyoor1) and a
cluster containing mostly the contexts of banana is created (Cpanana1). We
can return to the original corpus and check the overlap between the cluster
created by door and one of the clusters created by Cyyor1. F-measure was
78.66% using triplets and 72..61% using pairs.

This paper is similar (Yarowsky, 1995) where a word and one of its collo-
cate terms identify a sense. But in that paper, certain collocate relationships
were stronger than others (such as predicate-argument) and it was only cer-
tain words that tended to favor one sense over the other. For example, a
plant does not suggest a particular sense of plant. Unlike (Yarowsky, 1995),
(Bordag, 2006) does not record the specific type of collocation; that is, it
treats the local context like a bag of words, not using the syntactic properties
or even word positions as features.

6 Purandare and Pedersen (2004)

(Purandare and Pedersen, 2004) systematically compares the approaches by
(Schiitze, 1998) and (Pedersen and Bruce, 1997). The latter approach was
presented above and used vector spaces using second order cooccurrence
context representation. The former was not summarized here, but uses
similarity spaces and first order cooccurrence context representation. The
idea of (Pedersen and Bruce, 1997) is to represent first order contexts in a
similarity space where each context can be thought of as a point and the
weights of the edges between the points are a function of the similarity.
They found that second order context vectors perform better when data is
sparse.
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7 Conclusion

This paper has summarized and discussed several papers on WSI as well as
(Yarowsky, 1995), which is a knowledge-lean approach to WSD. Typically
these methods attempt to be knowledge independent and also tend to use
the bag of words model when characterizing the contexts. They rely on
the assumption that the context is sufficient to induce a set of senses that
corresponds to the sense distinctions in a dictionary. Evaluation of these
methods test this hypothesis. Typically these methods do not perform well
above baseline and can only handle course-grained senses, which may suggest
that the bag of words model that is usually employed may not be enough.
(Schiitze, 1998) suggested one possible application in IR that did not have
to work with an external set of senses.
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