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Motivation
● A rule-based system has already been developed to extract PPIs from AIMed with high 

precision (89%, but ~96-97% throwing out inter-annotator disagreements) and modest 
recall (~68-70%)

● Verb predicates in an ontology have been defined for the domain; a predicate 
represents a meaning of a verb and specifies its arguments in terms of 
syntactic/semantic restrictions

● The semantic interpreter (SI) uses verb predicates and a noun ontology to link clauses 
to predicates and label their arguments with semantic roles

● The knowledge extractor (KE) uses (1) semantic extraction rules to extract the desired 
relations/arguments from the SI, and then (2) syntactic/semantic filtering rules to 
extract the desired entities from those arguments

● The extraction and filtering rules will vary depending on what is to be extracted – as 
determined by a gold-standard or human judge

● Developing the filtering rules for AIMed took time – it was not always clear why 
something did or didn't interact, and there seem to be inconsistencies and errors 
within the annotation

● The goal is to ease the burden of applying the system to a new domain using a gold-
standard – by automatically learning to filter entities from arguments in the final step



  

Related Work – Rule-based methods – 
Mostly manual rules for extraction from parse trees – 

 and a custom chunker for relation extraction (Šarić, 2004)
● “Event Extraction from Biomedical Papers Using a Full Parser”, 2001, Yakushiji et. al.

– Define mapping rules from argument structures (containing grammatical relations) to  frame structures (containing 
slots/semantic roles) – Bad PP attachment was a major problem – No evaluation of the system on an information 
extraction task

● “Extracting regulatory gene expression networks from PubMed”, 2004, Šarić, et. al.

– CASS grammar, NP and relation chunker – e.g., up- or down- regulation of gene expression, e.g., prevent formation 
of complex  – High precision but no evaluation on one of five the corpora

● “IntEx: A Syntactic Role Driven Protein-Protein Interaction Extractor for Bio-Medical Text”, 2005, Ahmed et. al  – 

– Splits parse tree into clauses and uses a general algorithm for extracting PPIs based on a list of interaction terms – 
65.66 % precision, 26.94% recall on DIP abstracts – 45% of the errors were caused by bad protein tagging – (Low 
recall caused by ignoring full-text articles ...)

● “Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach”, 
2007, Rinaldi et. Al

– Full/deep dependency-based parsing; GENIA corpus for evaluation; low/mid 90s precision; also extracts 
“patterns describing biological interactions”

● “RelEx–Relation extraction using dependency parse trees”, 2007, Fundel et. al. 

–  NER with a dictionary, interaction terms, parsing and some manual rules to identify relations – p = 79, r = 85 on 
LLL

● “High precision rule based PPI extraction and per-pair basis performance evaluation”, 2012, Lee et. al. 

– A few simple rules on the output of the parser; AImed evaluation only – 94-97% precision, 15-24% recall (using our 
per-instance evaluation)



  

Related Work – ML-based methods – SVM classification 
of feature vectors – PPI features extracted from parse

● “Syntactic features for protein-protein interaction extraction”, 2007, Saetre et. al.

– Enju parser is used to generate feature vectors for SVM PPI classification using tree 
kernel – Enju is a deep parser that identifies arguments of verbs by linking them to a 
syntactic predicate-argument structures like verb_arg12 (ARG_i labeling scheme)

– AIMed 10-F CV: 64.3% precision, 44.1% recall, 52.0% F-score
● “Extracting Protein Interactions from Text with the Unified AkaneRE Event Extraction 

System”, Saetre et. Al, 2010.

– For event extraction, extracted 9 generalized templates from GENIA, which contain 
syntactic and semantic information about arguments (# of arguments, semantic roles, 
NE type of each role) – Learn which ne/event combinations go in each template, based 
on training data – But placed 6th in BioNLP-EE 

– AIMed 10-F CV 62.7% precision, 66.6% recall, 64.2% F-score
● “A hybrid approach to extract protein–protein interactions”, Bui et. Al, 2011.

– Extract candidate PPI pairs from the parse tree using high-recall manual rules, and then 
test/train a classifier on the output to produce a final classification (SVM, features from 
parse tree, paths between proteins)

– AIMed 10-F CV: 55.3% precision, 68.5% recall, 61.2% F-score



  

Motivation for Predicates –
Syntactic variations of “interaction” in AIMed

● “Our data suggest that TR6 inhibits the interactions of LIGHT with 
HVEM/TR2 and LTbetaR , thereby suppressing LIGHT-mediated HT29 cell 
death.”

● “Presenilin 1 suppresses the function of c-Jun homodimers via interaction 
with QM/Jif-1.”

– “The death domain of tumor necrosis factor receptor-1 (TNFR1) 
triggers distinct signaling pathways leading to apoptosis and NF-kappa 
B activation through its interaction with the death domain protein 
TRADD.”

● “The interactions of hsp70 and hsp90 in intermediate PR complexes are 
shown to be distinct from their separate interactions in early PR complexes 
(hsp70) or in mature PR complexes (hsp90).”

– “Here, a direct interaction between the activation domain of p53 and 
two subunits of the TFIID complex, TAFII40 and TAFII60, is reported.”

● “Finally, we demonstrate that the anti-CD30L MAb M81 also completely 
inhibits CD30/CD30L interaction.”



  

Idea for Predicates
● A single verb may be used to express different meanings, and its meaning depends on its context (the 

meaning of “interaction” was the same in all of the previous sentences – PPI)

● The arguments of a single verb meaning may be expressed in various syntactic forms

● The parser's attachment of PPs/clauses is not reliable, and knowledge is needed about the 
arguments of the verb to recover the correct attachment

● Define predicate(s) for each verb meaning/syntactic variation. A predicate (primarily) ...

– Defines a list of verbs which may mean that predicate

– Defines arguments (and adjuncts) labeled with semantic roles

● A semantic role defines syntactic and semantic restrictions on the grammatical relations which 
may be used to instantiate that semantic role – both must be satisfied

● “Our data suggest that TR6 inhibits the interactions of LIGHT with HVEM/TR2 and LTbetaR , 
thereby suppressing LIGHT-mediated HT29 cell death.”

● (interact-nom-of-a-with-b  (verbs interact)  (require theme)

(mod (gr (mod)) (sr thing))

(theme (gr (imm-pp (prep of))) (sr thing))

(cotheme (gr (pp (prep with))) (sr thing))

(parents abstract-interact-nom))

● Four predicates currently exist for the “interaction” nominalization – The SI must choose one for 
each “interaction” clause

Captures a broader meaning
than PPIs since not using SRs
to restrict head noun concepts
of arguments.

“Pharmacological interaction
of drugs with immune receptors”



  

The Input to the SI

● A list of clauses (including nominalizations) for a sentence, where each clause 
contains grammatical relations linked to phrases in the parse tree

– The grammatical relations are candidate argument/adjuncts; at the same time 
they may be candidate modifiers of NPs (attach to NPs)

● Lists of candidate subjects, antecedents of anaphors
● Candidate PP complements, clausal complements, NP complements

● Definitions of predicates, noun relations, and noun concepts in their respective 
ontologies (“is-a” hierarchically structured definitions)

● A lexicon for words not in WordNet; we use both only for stemming

● Output described more fully after example – 

– Clauses are linked to predicates and their arguments/adjuncts are 
determined



  

Sentence walk-through – Parse tree

“Our data suggest that TR6 inhibits the interactions of LIGHT with HVEM/TR2 and 
LTbetaR , thereby suppressing LIGHT-mediated HT29 cell death.”

Wrong
attachment



  

Sentence walk-through – MCR post-processor – 
“inhibits” clause

“Our data suggest that TR6 inhibits the interactions of LIGHT with HVEM/TR2 and 
LTbetaR , thereby suppressing LIGHT-mediated HT29 cell death.”

Not
parser
attached

Misnomer; Candidate-clausal complement (CP); can be a relative if not CP.
Since it's a nominalization, it's also a candidate object (NP complement).

- The clause includes PPs and RELATIVEs 
that are not syntactically attached

- Also, PPs are explicitly detached from 
NPs and listed with the rest of the PPs as 
candidate arguments/adjuncts

- RELATIVEs are treated the same way
though not explicitly detached here

- Parser syntactic attachment is 
preserved via IDs

- As a result the same PP/RELATIVE 
appears in multiple clauses

Two possibilities 
for each PP and 
RELATIVE:

- It attaches to 
the verb 
(argument/ 
adjunct)

- It attaches to a 
phrase (e.g., 
NP/ADJP)



  

Sentence walk-through – MCR post-processor – 
“interactions” clause

“Our data suggest that TR6 inhibits the interactions of LIGHT with HVEM/TR2 and 
LTbetaR , thereby suppressing LIGHT-mediated HT29 cell death.”

Not
parser
attached



  

Sentence walk-through – Semantic Interpreter

“Our data suggest that TR6 inhibits the interactions of LIGHT with HVEM/TR2 and 
LTbetaR , thereby suppressing LIGHT-mediated HT29 cell death.”

(protein
(pattern _GP_([\d]+)_([\d]+))
(parents biological-entity))

(interaction (nouns interaction)
(parents interaction-property))

Recovered
attachment

IDs and
Redundant
nesting
removed



  

Output of the SI
● Clauses are labeled with verb meanings (predicates) in the predicate 

ontology

● For the chosen predicate of each clause, arguments and adjuncts are 
extracted and labeled with semantic roles (using the semantic role 
definitions of the predicate)

– PP attachments are determined using a combination of information 
from the parser and from semantic roles of predicates and 
subcategorization of noun concepts

– Head nouns are labeled with concepts in the noun ontology and may 
be restricted by SRs

● Additional noun relations (triggered by head nouns) are outputted using a 
list of noun relation rules – Annotated similarly

● If a semantic role is not generated for a grammatical relation, then a 
grammatical role for it is still generated; If a clause is not linked to a 
predicate, then it will consist only of grammatical roles



  

Semantic Interpreter – Core of Algorithm
● Links each clause to a predicate, determines its arguments and their PP attachments

● To choose a predicate for a clause

● For each predicate in the list of candidate predicates of a clause, a candidate clause is 
generated which has been annotated with the argument semantic roles of that predicate

● Determines an argument by checking the list of candidate grammatical relations for 
any that satisfy the argument's GRs and SRs (next slide: possible to recover from 
bad parser attachment)

● L ← the list of candidate clauses having the largest number of semantic roles

● Delete any candidates in L not having a required semantic role; Choose an L[i] with first 
priority (tied candidates are discarded)

●  Attach PPs to the phrases of the semantic roles of the resulting clauses with the 
restriction that a PP which is already a semantic role cannot be attached 

● Firstly, attach PPs to to NPs having a noun concept that subcategorizes for a preposition 
(e.g., “region” subcategorizes for “in”); possible to recover from bad parser attachment

● Secondly, attach the rest of the PPs using the parser's attachment



  

Semantic Interpreter – Core of Algorithm - 
Recover from attachment errors;

Some GRs rely on initial SI output

● Recover correct attachment of a PP/RELATIVE that has been wrongly attached to an NP using the 
semantic roles of verb predicates

– If a PP/RELATIVE that is attached to the verb is a semantic role, then that PP/RELATIVE cannot be a 
semantic role of a verb that does not have that PP/RELATIVE attached (give preference to parser 
attachment)

– Requires two passes (of previous slide): one for checking which semantic roles are syntactically 
attached, and one for generating the final roles

– The second pass can generate semantic roles from PPs/RELATIVEs which are not syntactically 
attached
 

● Some GRs rely on an initial SI output – roles with PP attachments – in order to be determined – 
requires two passes of the algorithm as just described

● Some GRs require syntactic information from PP attachments of arguments, which cannot be 
determined until semantic roles have been determined. These GRs, in the first pass place a 
(reduced, non-attachment checking) restriction on the inputted grammatical relation, while in the 
second place, they place the full restriction on the role generated in the first pass. 

● Above is a proposed computational efficiency improvement
● In the current implementation, those clauses are actually always regenerated from scratch in the second pass, and 

both of the passes above happen in the second pass
● The first pass for these clauses is computational overhead



  

Knowledge Extractor
● KE-1 uses semantic extraction rules to extract the desired relations– particular 

arguments/adjuncts from particular SI relations (i.e.,, argument-wise relations) 
(extraction rules = relation/argument extraction rules)

● KE-2 uses filtering rules to extract the entities (e.g., proteins) from the KE-1; 
(filtering rules = entity extraction rules) 

● KE-3 produces n-tuples of entities (i.e., entity-wise relations) from the KE-2

(predicate abstract-interact-nom
          ke1-abstract-interact-nom

(theme (noun protein))
(cotheme (noun protein)))

(1) extraction of interactions has taken place in nominalization
(2) nominalization has at least two semantic roles satisfied         

                    (“mod” is special and not counted in number of roles)

event-nom – If a condition is met, the phrase is filtered

(TO-DO: conditions for event-nom
  should be parameterized in the rule)

KE-1 extraction rule KE-2 filtering rule

Extract “theme” from
Predicates subsumed by 
abstract-interact-nom
that contain a protein
entitiy



  

Knowledge Extractor – Example 1

(predicate abstract-interact-nom
          ke1-abstract-interact-nom

(theme (noun protein))
(cotheme (noun protein)))

“Our data suggest that TR6 inhibits the interactions of LIGHT with HVEM/TR2 and 
LTbetaR , thereby suppressing LIGHT-mediated HT29 cell death.”

KE-2 filtering rules
are executed in a 
depth-first traversal
of the KE-1 tree.
Each rule is tried
on each phrase, token
or relation.



  

Knowledge Extractor – Example 2 (Interaction 
keyword is an argument/adjunct's head noun)

(predicate nil general-rule-interaction-property
(theme (sr interaction-property) (noun protein))
(cotheme (noun protein)))

(ligand
(nouns ligand)
(subcat (prep for) 

          (sr thing))
(parents 

         interaction-property))

(interaction-property
(parents biological-entity

        biological-event))

(KE-1
  (identified-19
    (general-rule-interaction-property
      ( (cotheme (np (senses (protein (mod ) (head TRAP_GP_6_7)))))
        (theme
          (pp
            (prep as)
            (nom-np

(nom-np
    (senses (ligand (mod a) (head ligand)))
    (clause ligand-25))

                (cotheme
                   (pp

   (prep for)
                      (np (senses

       (protein (mod ) (head CD40_GP_13_14)))))))))))))

(ligate-nom
(verbs ligate)
(theme (gr (prn) (appos))

                     (sr thing))
(cotheme (gr (mod) (pp (prep for)))

                         (sr thing))
(parents 

   abstract-interact-substance-nom))

Noun concepts

Nom predicate

Expressed in a murine myeloma , TRAP_GP_6_7 was identified as a ligand for 
CD40_GP_13_14 by binding to a soluble CD40_GP_19_20 construct .

KE-1 extraction rule

“nil” rule matches any predicate;
it is independent of SI role names
(role names are assigned not
matched) but subject to SRs



  

Knowledge Extractor – Example 3 
(NO PPIs – Uses filtering rules)

(KE-2
  (inhibited-31
    (ke1-abstract-directed-interact
      (
        (agent
          (filter-phrase
            filter-attachments-of-np-with-
              disallowed-head))
        (theme
          (filter-phrase filter-event-nom)
          (np (extracted-nouns ))))))
  (activation-35
    (ke1-abstract-interact-nom
      (
        (theme
          (pp
            (prep of)
            (filter-phrase filter-np-with-
                 disallowed-head-concept)))
        (cotheme
          (pp (prep by)
            (np (extracted-nouns (protein 
MyoD_GP_25_26)))))))))

As expected, overexpression of either 
Id3/HLH462 or ITF-2b effectively inhibited the
activation of the muscle-specific creatine kinase
promoter by the myogenic transcription factor
MyoD.

(filter-phrase filter-attachments-of-np-with-
                       disallowed-head

(cond
(label np np-prn prn np-appos nom-np)
(np-child-0

(h-concept exon mutant cotransfection
                        formation isoform absence neither
                        coexpression overexpression)))

(exclude-from-filter child-0))



  

ML Task – Template filtering rules for generating features for entities

(filter-phrase T-filter-attachments-of-np-with-
                       disallowed-head

(cond
(label np np-prn prn np-appos nom-np)
(np-child-0

(h-concept <T>)))
(exclude-from-filter child-0))

As expected, overexpression of either Id3/HLH462 or ITF-2b effectively inhibited 
the activation of the muscle-specific creatine kinase promoter by the myogenic 
transcription factor MyoD.

● Suppose the rule's conditions 
are checked on “overexpression 
of...” NP.

● If “label” is satisfied, the np-child-
0 will be checked for condition 
“h-concept <T>”.
● A <T> condition is only 

checked if all previous 
conditions are satisfied

● An “h-concept <T>” condition will 
not filter, but instead generates 
all possible condition instances 
which could filter the phrase – if 
such a rule were used in 
actuality
● An “h-concept <T>” condition 

generates all “h-concept H” 
condition instances, where H 
is a head concept of the 
phrase

            (filter-phrase
              <T>
              T-filter-phrase-and-attachments-by-head-concept
              h-concept
              overexpression)

              (filter-phrase
                <T>
                T-filter-phrase-by-
                       head-concept
                h-concept promoter)

              (filter-phrase
                <T>
                T-filter-phrase-by-mod-word
                mod-word
                muscle-specific)

Inserted in the KE-2 tree 
corresponding to the KE-1 tree 
where rule was checked

A depth-first traversal to each 
entity yields the list of condition 
instances which could filter that 
entity – if it were actually a rule



  

ML Task: Learning to filter entities 

● What is classified?

– Outputted entities of the system (i.e., involved in a relation)

– Such entities are either TPs or FPs with respect to the gold-standard – we want to filter out the 
FPs while not filtering the TPs

● What are the classes?

– Don't filter (0) – An entity is classified as 0 in the training data if it is involved in any gold-
standard interaction

– Filter (1) – An entity is classified as 1 in the training data if it is not involved in any gold-
standard interaction (i.e., the entity is a FP)

● What are the features of entities?

– The list of template condition instances on the depth-first traversal of the KE-2 tree to that entity 

– The list of template condition instances of the other entities – those that are involved in an 
outputted relation with the entity

● The essential/desired filtering feature may only be present in the DFT of one of the entities in 
the PPI – e.g., “promoter” head noun

● But if both are FPs, both are to be classified as 0 – this essential feature must be present in 
both entities

● This feature sharing causes the essential/desired feature to be weighted towards class 0 in 
training



  

Experimental Setup – Template 
filtering rules

(filter-relation T1 (cond (ex-rule general-rule-interaction-property) (arg-head <T>)))

(filter-phrase T2 (cond (label np np-prn prn np-appos nom-np) (np-child-0 (h-concept <T>))))

(filter-phrase T3 (cond (label np np-prn prn np-appos nom-np) (np-child-0 (m-concept <T>))))

(filter-phrase T4 (cond (label np np-prn prn np-appos nom-np) (np-child-0 (mod-word <T>))))

(filter-phrase T5 (cond (m-concept <T>)))

(filter-phrase T6 (cond (mod-word <T>)))

(filter-phrase T7 (cond (h-concept <T>)))

(filter-phrase T8 (cond (alt-ex-head <T>)))

Some of the rules in the manual ruleset 
were replaced by
template rules to create a new ruleset, the 
“template ruleset”,
which preserves the original ordering of 
the manual ruleset.

Templates determine which features are to 
be generated for outputted entities.



  

Experimental Setup
● Inter-annotator disagreement – our judge and AIMed are the two annotators

– We only consider PPIs that our expert judge agrees with – throw out disagreements

– If True PPI and judge disagrees, system is not penalized for missing it, and not given 
credit for recovering it; if False PPI and judge disagrees, system is not penalized for 
getting it, and not given credit for not getting it (in any case, TNs aren't used to 
compute precision/recall)

● Entities not outputted by the system, entities with no condition instances (extracted 
features) and entities in an interaction in the IAD file are all classified as "0" and have 
only a single special "nil" feature which no other entities have.

● The total number of features is 692 including the "nil" feature.

● There are 111 entities labeled as "filter" (1) in the training data.

● There are 1361 entities labeled as "no filter" (0) in the training data, but only 1072 of 
them have features other than the "nil" feature.

10-fold stratified CV on AIMed, using 9 parts for training and 1 part for testing in each of 
the 10 folds – Used SVM with linear kernel from scikit-learn, default parameters

Stratified = equal proportion of classes in each of the ten datasets as in the original 
dataset; the split for each of the ten datasets is roughly 10 to filter and 100 to not filter



  

Baseline systems
Manual rules
(No-test IAD)

Template ruleset – 
The filtering rules to be replaced by the classifier (for which 
there correspond templates) are not included
(No-test IAD) – Upper bound on recall for the learned 
classifier

Precision 96.7 86.8

Recall 69.3 71.2

F-score 80.8 78.2

Manual rules
(Test IAD) – For  
comparison with 
others' AIMed 
scores

Template ruleset – 
The filtering rules to be replaced by the classifier (for which 
there correspond templates) are not included
(Test IAD) – Upper bound on recall for the learned 
classifier

Precision 89.0                                                                            80.5

Recall 68.8                                                                            70.8

F-score 77.6
S.o.A F-Score = ~65

                                                                           75.3



  

Experiment 1 – Classification accuracy of outputted entities

# features Average classification 
accuracy of testing data 
using stratified 10-fold 
CV

RFECV
 (Train IAD)

285 0.97

RFECV
 (No-Train IAD)

285 0.97

All features
(Train IAD)

692 0.97

All features
(No-train IAD)

692 0.97

No-train IAD means to use the IAD and not train any entities in an outputted 
IAD interaction (they are classified as 0 and given the “nil” feature)

Train IAD means not to use the IAD file and train on all outputted entities 
with features

RFECV = Recursive feature elimination with cross-validation. Initial training yields
a weight for each feature with high positive or negative values indicating more
Importance. Features are recursively deleted from the data, and the feature set
corresponding to the highest CV classification accuracy is chosen.

Too similar...
But Next slide
Shows IAD
vs. not are
not identical
models



  

Experiment 2 – Performance of system on AIMed using 
learned classifier as a post-processor

RFECV
(No-train IAD,
No-test IAD)

RFECV
(train IAD,
No-Test 
IAD)

RFECV
(train IAD,
Test IAD)

RFECV
(No-train IAD,
Test IAD)

Precision 93.1 (manual = 96.7) 93.5 88.1 85.8

Recall 71 (manual =69.3) 70.9 70.5 70.6

F-score 80.6 (Manual  =80.8) 80.6                 78.3 77.5

All features
(No-proba-cutoff)
(No-test IAD)

All features
(proba-cutoff 0.92)
(No-test IAD)

Precision 92.6 94.1

Recall 71.1 69.4

F-score 80.5 79.9

Manual rules in 
conjunction with 
RFECV (train IAD);
(No-Test IAD)

97.9

69.3

81.1



  

Discussion
RFECV produces only a slight increase in F-score (0.1%) compared to All features (No-proba 
cutoff)

Training on the IAD or not produces similar results  (but not identical, as RFECV table shows) 

Ignoring IAD interactions during system evaluation produces better results in either case

The ML filter only classifiers interactions outputted by the system, i.e., TP and FP ; most of 
the misclassifications of the system come from FN, so even though the ML filter has 0.97 
accuracy, the overall improvement in F-score compared with template ruleset baseline is only 
2.4%

Manual rules plus RFECV classifier is best – does not reduce recall from manual ruleset, but 
increases precision by 1.2%

The intention of the filtering-classifier is to (1) reduce the workload in applying it to a new 
domain, (2) be able to generalize better than the current manual ruleset when tested on a 
different corpus



  

Future Work

Recent experiments on LLL show such stringent filtering rules are not needed, as they are needed for AIMed – 
thus the filtering rules are corpus/annotation-policy dependent

With minimal filtering rules, and NO ML-filter:

    On the initial run on LLL: 100% precision, 12% recall

    After adding some new predicates and noun concepts: 96% precision, 58.5% recall, 72.7% F-score

    LLL has a lot of modifiers that trigger interactions – an unhanded construction

Need a NER system for applying the system to real articles

     Evaluation of NER is problematic using AIMed – the NER tags must correspond exactly to the AIMed tag

System can easily be extended to extract different type of events besides PPI – such as up-regulation of gene 
expression

      The BioNLP challenge (based on GENIA corpus) requires a more fine-grained relation extraction
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