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Abstract—We propose a rule-based system consisting of
(1) the semantic interpreter, a system relying on syntactico-
semantic rules specifying the argument structures of verb
meanings, and (2) the knowledge extractor, a system relying
on semantic extraction rules and syntactico-semantic filtering
rules for extracting entities from arguments. We also propose a
method to automatically learn to filter entities from the output
of the existing rule-based system. The goal is to ease the burden
in applying the system to a new domain, or to a similar domain
using a gold standard with a differing annotation policy. We
show the system with some of the manual rules replaced by
the classifier as a post-processor produces comparable results
to the original rule-based system, although with slightly more
recall but less precision.
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I. I NTRODUCTION

Protein-protein interactions (PPIs) are fundamental to
almost all of the processes of living cells; as such, their
study lies within the domain of several branches of biol-
ogy [15]. Biologists conducting PPI experiments must first
validate interactions from previous research [8]. There are
several structured databases containing PPIs reported in the
literature which biologists may search [18, 11, 7, 9, 4].
However, these database curation efforts have not kept up
with the thousands of new research papers published every
day and researchers must still search through the literature
for interactions [16, 8].

As a result, growing attention has been directed at infor-
mation extraction techniques for the automatic construction
of PPI databases from the biomedical literature. Most of the
PPIs can be found in publications indexed by MEDLINE,
which contains about 15 million articles with over 2,000
articles added daily [8, 16]. In this paper, we study the
problem of extracting PPIs from English text, which has
become the most widely studied problem in the biomedical
text-mining domain [10].

We formulate the PPI extraction problem as follows: given
a plain-text input sentence, identify the unordered pairs of
proteins in the sentence that are stated to chemically interact.
Solving the PPI extraction problem involves both identifying
protein names in the text and identifying the pairs of proteins
that are stated to interact; both of these problems are difficult
and have not been completely solved [8]. We assume the
protein annotations have been provided by a gold standard

or a NER system, and this paper only focuses on the problem
of extracting PPIs given known proteins.

Most previous work has focused on optimizing F-score,
an average of precision and recall [10]. However, for the
application of enriching manually curated PPI databases with
automatically extracted PPIs, obtaining high precision is
more important than obtaining high recall. Hence, we focus
on obtaining high precision while maintaining an acceptable
level of recall.

II. RELATED WORK

Previous approaches for solving the PPI extraction prob-
lem may be broadly categorized into rule-based extraction
methods and machine learning (ML) classification methods.

A. Rule-based PPI extraction

The rule-based methods extract PPIs using rules defined
in terms of lexical and syntactic information. Some systems
use rules that rely only on words, part of speech (POS) tags,
and a dictionary of interaction verbs [2, 14]. A dynamic
programming algorithm for automatically discovering rules
to extract PPIs has also been proposed [6]. Other approaches
rely on parsers that can produce dependency or constituent
trees, and rules are defined over such trees. An early
approach similar to ours relied on manual mapping rules
from argument structures (containing grammatical relations)
to frame structures (containing slots/semantic roles) [19].
That approach differs from ours in that the SI attempts
to overcome some PP attachment errors produced by the
parser and that the KE allows mapping rules to be defined
in terms of semantics rather than syntax. Another approach
splits the parse tree into clauses and uses a general algorithm
for extracting PPIs that relies on a list of interaction terms
[1]; 45% of their misclassifications were caused by wrong
named entity tags. Another system used a NER system with
a dictionary, interaction terms, parsing and manual rules to
identify relations [5]. A more recent system used a few
simple rules on the output of the parser and achieved very
high precision on AIMed (94-97%), although it achieves low
recall (15-24%) [10]; the authors propose a more practical
evaluation metric that requires, for each PPI, that only one
PPI be recovered out of its possibly many identical copies
in the text.



B. Machine learning-based PPI extraction

The machine-learning methods generally extract features
from paths between protein pairs in the parse tree and use
SVM to classify feature vectors of PPIs. Some approaches
extracted features from the output of Enju, a deep parser that
identifies arguments of verbs by linking them to syntactic
predicate-argument structures [16] [17]; the latter system
also uses an additional parser, and is the state of the art
system for extracting PPIs from AIMed (P: 62.7%, R:
66.6%, F: 64.2%). Other systems also used multiple kernels
and parsers [12] [13]. A hybrid approach extracted candidate
PPIs from the parse tree using high-recall manual rules
and then trained and evaluated a classifier that output to
to produce a final classification [3].

III. SYSTEM DESCRIPTION

The system consists of a preprocessor, a semantic inter-
preter (SI) and a knowledge extractor (KE). The prepro-
cessor produces a list of clauses with their grammatical
relations. The SI uses syntactic rules (defined in terms
of restrictions on grammatical relations) to determine the
arguments and adjuncts (labeled with semantic roles) of each
verb as well as to generate relations of nouns. However,
such a syntactic analysis of the clause to determine its
arguments and adjuncts does notfully determine themor
the meaning of the verb, since semantic rules are required
to complete the semantic interpretation (the semantic rules
are defined in terms on selectional restrictions on head
noun concepts of arguments/adjuncts). The SI is capable
of using such syntactico-semantic rules (i.e., restrictions on
grammatical relations combined with restrictions on head
nouns) to more fully determine the meaning of the verb, but,
in our current pipeline, this step is postponed until the KE,
where the desired semantic relations and their arguments are
extracted from the output of the SI using semantic extraction
rules. The KE also extracts individual noun entities from
those relations using syntactico-semantic filtering rulesand
then creates new relations between the individual extracted
entities of the arguments. The input to the system is a
sentence which has optionally been annotated with named
entities.

A. Preprocessor

The preprocessor performs the two main tasks of parsing
the sentence (i.e., producing a parse tree consisting of
phrases using Stanford parser) and producing a minimal
clause reconstruction (MCR) of that parse tree. The MCR of
the parse tree is performed by the module of the same name,
and produces a list of verb clauses, each containing a list of
indexes into the parse tree labeled with grammatical relations
(e.g., candidate grammatical subjects and candidate NP and
PP complements). The MCR also performs the additional
tasks of (1) identifying the voice of the verb (i.e., passiveor
active), (2) identifying whether the clause is (potentially)

a relative or not (i.e., a modifier clause that attaches to
noun phrase, e.g., “the proteins that interactare known”)
and (3) identifying NP appositions and NP coordinations by
explicitly modifying node labels in the parse tree.

The preprocessor also post-processes the MCR output to
(1) produce similar clauses for nominalizations of verbs, (2)
produce clause representations which serve as input to the
SI and (3) enumerate candidate antecedents of each anaphor.
Such a clause produced by the preprocessor has phrases
which preserves the hierarchical structure of the parse tree’s
phrases, except that the noun phrases (NPs) do not contain
attaching prepositional phrases (PPs) or embedded relative
clauses. Instead, such PPs and embedded relative clauses
(as well as PPs and clauses which attach to the verb
syntactically, according to the parse tree) are represented
as candidate grammatical relations (the information of the
original syntactic attachment to the phrase is preserved).The
SI is left to resolve this PP and clausal attachment ambiguity.

B. Semantic Interpreter

Let L denote the input to the SI, a list of clauses
from the preprocessor for a given parsed sentence. The
semantic interpreter (SI) produces anSI tree, a list of
verb clauses (including nominalizations) generated fromL

and a list of noun relations generated from those formerly
mentioned outputted verb clauses; we refer to these as the
outputted clauses/relations of the SI. The predicate and noun
ontologies as well as the noun relation rules are used to
generate the SI tree. The structure of the SI tree preserves
the hierarchical structure ofL, except that (1) each clause
has been linked to a predicate (possibly the empty,nil
predicate), (2) grammatical relations of clauses have been
replaced by (mapped to) arguments and/or adjuncts (labeled
with semantic and/or grammatical roles), (3) head nouns of
NPs have been linked to concepts in the noun ontology,
(4) PP and clausal attachments to phrases (e.g., NPs) have
been determined, and (5) candidate subjects/antecedents
have been constricted. Once the SI tree is generated for each
of the clauses inL, a list of noun relations are extracted from
L using the list of noun relation rules; each generated noun
relation is added to the SI tree before being finally outputted.

The noun ontology is a set of hierarchically structured
noun concepts, each containing a list of nouns, an optional
pattern, and an optional list of parent (i.e., “is-a”) concepts.
A concept represents a meaning/sense of each of the nouns
in its list of nouns. We say a concept,A, subsumesanother
concept,B, if A can be reached fromB by recursively
traversing the concepts in the list of parent concepts of each
concept. We say a nounhas a concept in the ontology if
that noun is listed in that concept’s list of nouns , i.e.,
that noun canmean that concept. If some noun has no
concept explicitly in the noun ontology, then that noun is
still assigned to have the default, all-subsuming concept,
thing. Concepts in the noun ontology also be defined to



subcategorize for prepositions; if an NP argument/adjunct
is headed by a concept that subcategorizes for some prepo-
sition, and a PP headed by such a preposition follows that
NP, the SI will override syntactic (parser) attachment of that
PP to preferentially attach it to that NP argument/adjunct in
the PP attachment phase.

The pattern of a concept is intended to map (to that
concept) from nouns that have been pre-tagged with a
meaning/sense in a previous processing step, e.g., tagging
nouns as named entities using a NER system or a gold
standard. If the list of concepts of a noun is requested from
the ontology, first the noun is matched against the pattern
of each concept that has a pattern; if matches exist, the list
of matching concepts is returned as the list of concepts of
that noun. Otherwise, each concept that contains that noun
in its list of nouns is returned as the list of concepts of that
noun.

The predicate ontology is a set of hierarchically structured
predicates, each of which represents a potential mean-
ing/sense of a list of verbs. Each predicate contains that
list of verbs, a list of of semantic role definitions (classi-
fied either as arguments or adjuncts), an optional priority
integer, an optional list of required roles and an optional
list of parent (i.e., “is-a”) predicates. During the execution
of the algorithm, each predicate has additional semantic
roles, requirements and priorities generated from its parent
predicates. There is a predicate ontology for verbs and
a predicate ontology for nominalizations of verbs, which
allows for different hierarchical structures for the two types
of predicates.

Each semantic role definition is used to generate an
argument or adjunct semantic role (tree) in the outputted
clause linked to the predicate containing that semantic
role definition. The arguments/adjuncts are generated from
(mapped from) grammatical relations in the inputted clauses,
L; a generated argument/adjunct preserves the hierarchical
structure of its corresponding inputted grammatical relation,
except that PPs and relatives have been attached to phrases.
Each semantic role definition consists of a list of grammati-
cal (i.e., syntactic) restrictions (GRs) and selectional (i.e., se-
mantic) restrictions (SRs). The GRs restrict the grammatical
relations which can generate the role based on their syntactic
features, while the SRs restrict those grammatical relations
based on their semantic features. The SRs restrict the head
noun’s concepts of the NP of the grammatical relation, while
the GRs restrict the type of the grammatical relation (e.g.,
subject or PP), or in other cases, some GRs additionally
restrict the types of phrases/tokens which are present in the
semantic role (including its attached PPs) which would be
generated for the grammatical relation.

If the semantic role definition contains a selectional re-
striction (SR) other thanthing, a corresponding semantic role
will only be generated if the head noun of the argument has
a concept that is subsumed by a concept in the list of SRs

(optionally, the list can contain “negated” SRs (prefixed with
“-”), indicating the head nouncannothave such a concept).
If a generated semantic role (i.e., argument/adjunct) was
subject to an SR, the list of candidate concepts of its head
noun will only contain concepts which are subsumed by
the SR (or which are not subsumed, in the case of negated
SRs). In any case, all generated noun phrases containing
a head noun include a list of the head noun’s candidate
concepts in the noun ontology. If at least one GR and one
SR of a semantic role definition is satisfied by a grammatical
relation, a semantic role is generated for that grammatical
relation.

1) SI Algorithm Overview:The SI determines the pred-
icate of each clause and its arguments and adjuncts and
generates a list of noun relations as a post-processing step.
The SI links a clause to a predicate by choosing from
the list of candidate predicates for that clause. A predicate
is in the set of candidates if it, or any predicate which
subsumes it, contains the main verb of the clause in its list
of verbs. A candidate predicate contains a set of semantic
role definitions, and so a choice of predicate is a choice of
semantic roles, i.e., the choice of the predicate of the clause
and its arguments are linked.

Let I be the list of candidate SI clauses containing at
least one semantic role, such that each clause is generated
from a different predicate in the list of candidate predicates.
First, each candidate SI clause inI not satisfying the list of
required semantic roles is removed fromI. If all remaining
candidate SI clauses have equal priority (as specified in
their definition), then a candidate clause having the largest
number of semantic roles (out of all candidate clauses in
I) is chosen as the meaning of the verb. On the other
hand, if the remaining candidate clauses do not all have the
same priority, a candidate clause having the highest priority
is chosen as the meaning of the verb. The SI algorithm
performs the following main tasks.

a) Generate semantic roles with their attachments for
all clauses inL in two passes:1

Semantic role definitions contain two kinds of GRs: ordi-
nary GRs and CC GRs. CC GRs test for coordinated NPs or
sub-tokens in NP coordinations or tokens of semantic roles
and generate a list of arguments containing each coordinated
NP or sub-token in the tested constituent. CC GRs have
two key differences from ordinary GRs: (1) CC GRs test
conditions on a semantic roleincluding its attached PPs
rather than on a grammatical relation of a clause inL, and
(2) if the CC GR is satisfied, a list of semantic roles rather
than a single semantic role is generated. These CC GRs
require PP attachment to have taken place before they can
be verified, but the decision of whether a PP/clause attaches
to a phrase requires that each clause already be linked to a

1In the current implementation, grammatical roles are also generated
within each of of these two passes, but this is not necessary and should be
postponed until after generating semantic roles entirely.



predicate and contain semantic roles, since a PP/clause may
not attach to any phrase if it is a semantic role. As such,
semantic roles are be generated in two passes of the clauses
in L.

In the first pass, the SI generates semantic roles with their
attachments for all clauses inL; if a semantic role definition
of a candidate predicate contains CC GR, that CC GR is
not used directly, but is transformed into a less restrictive
GR that does not test for conditions in PP attachments.2 If
the first pass has generated a clause containing a semantic
role that was produced by being subject to such a reduced-
restriction CC GR, then that semantic role and the predicate
of the clause are not finally determined until the end of
the second pass. In the beginning of the second pass, those
generated semantic roles subject to such reduced-restriction
CC GRs already contain their PP attachments, and only
these kinds of clauses are processed to finally determine if
its generated semantic roles satisfy their full-restriction CC
GRs. If a semantic role does not satisfy the full-restriction
CC GR, then a competing candidate predicate may linked
to the clause instead. PP attachment is performed in both
passes for the generated roles, but any candidate PP/clause
grammatical relation that was used to generate a semantic
role in the first or second pass may not attach to any phrase
of a role generated in the second pass.

b) Generate semantic roles with their attachments for
the clauses to be processed in two passes within either of
the two passes described above:For each of the two passes
described above, a semantic role for a clause is generated
from some grammatical relation of that clause. With some
restrictions, a semantic role can also be generated from a
grammatical relation of its parent to recover from attachment
errors made by the parser. Towards this end, the semantic
roles and their attachments are generated also in two passes
within either of the passes described above. The first pass
generates semantic roles using only post-verbal grammatical
relations that are syntactically attached by the parser to the
verb to generate a list of grammatical relations mapping to
such semantic roles and their attaching PPs and relatives.
The list contains grammatical relations that are part of a
semantic role generated using the attachment of the parser
and that may not be used (in the second pass) by clauses
not having that grammatical relation syntactically attached to
generate semantic roles. That is, in the second pass, semantic
roles are generated for all clauses inL such that a semantic
role can also be generated from a grammatical relation that is
not syntactically attached to the verb (but that is syntactically
and post-verbally attached to its post-verbal parent) and that
is not in the list of grammatical relations generated in the

2In the current implementation, for a given clause with candidate
predicates containing CC GRs, the first pass only considers those candidate
predicates without CC GRs and the second passalwaysreconsiders all of
its candidate predicates. This is computationally inefficient, since the partial
results from the first pass for these clauses are not used in the second pass.

first pass.
In either the first pass or the second pass, the following

steps are taken to generate semantic roles with their attach-
ments. For each clause to be processed, a predicate (possibly
the empty,nil predicate) is chosen and its corresponding
argument semantic roles are generated. PPs and relative
clauses are attached to phrases in two phrasal attachment
phases: firstly, PPs are attached to NP semantic roles that
have a head concept defining a preposition subcategorization
(possibly overriding the parser’s attachment), and secondly,
PPs and relatives are attached to phrases using the syntactic
attachment produced by the parser. LetP be a grammat-
ical relation of the inputted clause that is a candidate PP
complement or clausal complement. IfP is not actually a
complement, then it must instead attach to a phrase within
a role, and the following steps are taken to attach such a
phrase,P , in the second phrasal attachment phase. If a role
was generated forP , thenP cannot attach to any phrase
within a role of that clause or any other clause (however,
P may still be an argument of another clause). If a role
was not generated forP , then the attachment information
of P according to the parse tree is used, andP may attach
either to the verb or to a phrase within a role of that
clause. Following phrasal attachment, theadjunct semantic
roles (including their phrasal attachments) of the chosen
predicate are generated. Adjuncts are generated the same
way as arguments, except they cannot be generated for any
candidate grammatical relation that is an argument or is
attached to a phrase in an argument.

c) Generate grammatical roles with their attachments
for all clauses inL: For a given clause, a grammatical
role is generated from any grammatical relation that attaches
syntactically to the verb, but is not a semantic role and is not
attached to any phrase within a semantic role. A grammatical
role is generated by first generating a semantic role definition
that depends on the type of grammatical relation, and then
by generating a semantic role from that definition; phrasal
attachment for a such a generated grammatical role is
performed in the same way as for a semantic role.

d) Post-process the output to filter antecedents of
anaphors generated by the preprocessor and generate new
noun relations:Noun relations are generated from the list of
noun relation rules of the SI, which, similarly to predicates,
contain a list of semantic role definitions, although these
definitions contain only GRs. These GRs place restrictions
on which phrases of roles can be used to generate semantic
roles. Like the CC GRs of predicates, these GRs verify prop-
erties of the SI output (in particular, phrases of roles) rather
than the preprocessor output (i.e., grammatical relations);
some of these GRs are also CC GRs that generate lists of
semantic roles from a single phrase. A noun relation rule is
defined for a concept in the noun ontology, and is fired on a
noun phrase if its head noun has a concept that is subsumed
(in the noun ontology) by the concept for which the noun



relation rule is defined. Although the noun relation rules are
also hierarchically structured, this hierarchy is used only by
KE extraction rules to determine whether they can fire on a
noun relation.

C. Knowledge Extractor

The KE extracts relations from the clauses/relations of
the SI in three phases: (1) the KE-1 produces a list of
the desired relations,KE-1 relations, extracted from the SI
clauses/relations using a list of orderedextraction rules, (2)
the KE-2 producesKE-2 relationsby transforming its input
so that arguments contain extracted noun entities using a list
of orderedfiltering rules, and (3) the KE-3 forms a list of
n-tuples of extracted noun entities from each KE-2 relation,
say,r, where such ann-tuple represents an instance of the
relation,r, between itsn noun entities.

Let S denote the input to the KE-1 from the SI, i.e.,S is
a list of clauses/relations that are linked to predicates/noun
relation rules and that contain arguments and adjuncts la-
beled with semantic or grammatical roles. An extraction
rule defines a relation in terms of semantic role definitions;
while semantic role definitions of predicates are defined in
terms of GRs (i.e., syntax), the semantic role definitions of
extraction rules are defined in terms of semantic role labels
of predicates and of noun relation rules (i.e., semantics).
Semantic role definitions of extraction rules can also define
optional SRs that are analogous to the SRs of semantic role
definitions of predicates. A semantic role definition, says, of
an extraction rule, sayr, also definesextraction types, which
are are a list of noun concepts that restrict the concepts of the
noun entities that the KE-2 can extract from the semantic
role(s) generated bys in the KE-1 relation generated by
r (multiple semantic roles can be generated from a single
semantic role definition,s, if the semantic role of the SI
being extracted from is actually a list of coordinated roles
as produced by a CC GR). The extraction types of are also
used by the KE-1 to filter roles, antecedents of anaphors,
and subjects not containing a noun entity having a concept
subsumed by an extraction type.

An extraction rule may also be defined for an empty,
nil, predicate. The semantic role definitions of such a nil
extraction rule arenot defined in terms of semantic role
labels of predicates and of noun relation rules. Instead,
such a semantic role definition generates a semantic role
by matching any role in the SI clause that satisfies the
definition’s SR (if one is defined; otherwise, any role will
be chosen). Such nil extraction rules may be used in cases
where the desired relation to be extracted is indicated by the
head noun of an argument/adjunct rather than by a verb. An
alternative to using a nil extraction rule is to define a noun
relation rule in the SI. However, a noun relation rule may fire
on the head noun of any noun phrase, not just noun phrases
that are roles (i.e., arguments/adjuncts). For this reason, it is
intended that a noun relation rule be used in cases when all

of the arguments of the relation are within the scope of the
NP and that a nil extraction rule be used when one of the
arguments is external, i.e., one of its arguments is another
argument/adjunct of its clause.

The primary task of the KE-2 is to extract noun entities
having a concept subsumed by an extraction type (i.e.,
extraction entities) from the arguments of KE-1 relations.
Rules that filter phrases and tokens within arguments are
required by the entity extraction algorithm because even if
the arguments of the KE-1 relation are correct, not every
extraction entity in every argument may relate to every
other extraction entity in every other argument. Although
the inputted KE-1 relations should be correct, the KE-2 also
contains rules to filter erroneous relations.

Rules to filter tokens, phrases and relations are defined by
filter-token, filter-phrase and filter-relation types of filtering
rules, respectively. These rules contain a list of conditions
and pre-filtering actions to take upon firing the rule but
before filtering the constituent. Each rule type defines its
own set of primitive condition types which test syntactic
properties (e.g., the phrase label) or semantic properties
(e.g., a concept of the head noun) of constituents. A rule is
constructed by specifying a list conditions and post-filtering
actions with their parameters.

The conditions of each filter-phrase (filter-token) rule are
tested on each phrase (token) of each KE-1 relation; if
the conditions are satisfied, the rule fires, the pre-filtering
actions are taken and the phrase (token) is filtered; a tree
indicating which rule filtered the phrase (token) is inserted
in the outputted KE-2 relation at the tree that corresponds
to the tree in the KE-1 relation on which the rule fired (the
hierarchical structure of the KE-1 relation is preserved in
the KE-2 relation). The conditions of the filter-relation rules
are similarly tested on each KE-1 relation to determine if
the relation should be filtered.

IV. L EARNING TO FILTER ENTITIES

We have developed a list of manually-crafted filtering
rules for our gold standard development corpus, AIMed,
termed the “manual ruleset”. While those filtering rules work
well for AIMed, they may not be suitable for extracting PPIs
from other corpora with slightly differing annotation policies
(e.g., LLL or BioInfer). Our goal is to learn a classifier
to filter outputted entities of the system (i.e., present in
an argument of a KE-3 relation) as a final post-processing
step. To this end, some of the rules in the manual ruleset
were replaced bytemplate rulesto create a new ruleset, the
“template ruleset”, which preserves the original orderingof
the manual ruleset. The KE-2 uses the template rules to
generate features for outputted entities. The classifier learns
to label each outputted entity either as filter (1) or don’t filter
(0). An entity is classified as filter (1) if it is involved in a
FP relation (e.g., PPI) with respect to the gold standard; it
is classified as don’t filter (0), otherwise.



A template rule is defined as a filtering rule containing
a list of conditions such that the last condition has<T>as
its last parameter (a condition instance of a template will
only be generated if all previous conditions are satisfied).
If the KE-2 tests whether the<T>condition of a template
rule satisfies properties of a constituent, that constituent will
not be filtered by the template rule, but a list ofcondition
instancesof that condition will be generated at the tree in the
KE-2 relation corresponding to the tree in the KE-1 relation
on which that condition was tested. Each condition instance
contains the name of the template rule, the name of the
condition containing<T>and a parameter for that condition
which would cause the constituent to be filtered if such a
rule existed as an actual filtering rule.

Any primitive condition (containing a<T>or not) being
tested on a constituent first generates a list of all proper-
ties extracted from that constituent which could potentially
satisfy it; the parameters of the condition are checked
against this list of possibilities to determine if the constituent
should be filtered. The properties that are extracted from the
constituent depend on the condition type. For example, the
primitive condition, h-concept, first generates a list of all
concepts of the head noun and then checks if its list of
parameters satisfies that generated list; a parameter of h-
concept is a noun concept prefixed by “-” or not and can
specify that a concept of a head noun either be subsumed
by the parameter or not. The condition instances of a
<T>condition only cause the first step of this process to be
carried out, i.e., generating the list of properties extracted
from the constituent, but not filtering; however, in addition,
the properties in the generated list are outputted as condition
instances.

The features of an entity are the condition instances of
template filtering rules on the depth-first traversal from the
root to that entity. Such a condition instance represents a
potential filtering rule, i.e., an instantiation of the template
rule with its corresponding condition instance which would
cause that entity to be filtered. In addition, the features ofan
entity also include such condition instances of other entities
involved in an outputted relation with that entity. We have
defined eight template rules.

1) (filter-relation T1 (cond (ex-rule general-rule-
interaction-property) (arg-head<T>)))

2) (filter-phrase T2 (cond (label np np-prn prn np-appos
nom-np) (np-child-0 (h-concept<T>))))

3) (filter-phrase T3 (cond (label np np-prn prn np-appos
nom-np) (np-child-0 (m-concept<T>))))

4) (filter-phrase T4 (cond (label np np-prn prn np-appos
nom-np) (np-child-0 (mod-word<T>))))

5) (filter-phrase T5 (cond (m-concept<T>)))
6) (filter-phrase T6 (cond (mod-word<T>)))
7) (filter-phrase T7 (cond (h-concept<T>)))
8) (filter-phrase T8 (cond (alt-ex-head<T>)))

The condition instances vary depending on the condition,
as described below. Let P (R) be the phrase (relation) on
which the rule fired if the condition is part of a filter-phrase
(filter-relation) rule.

• arg-head - All head noun concepts of all arguments of
R.

• m-concept- All noun concepts of modifiers of the head
noun of P.

• h-concept - All noun concepts of the head noun of P.
• mod-word - All modifier words of the head noun of P

that have no noun concept.
• alt-ex-head- All “alternate” noun concepts of the head

noun of P that has a noun concept with a pattern
defined, indicating that head noun has a named entity
tag; the “alternate” concepts of such a tagged entity are
produced by first removing the tag using its pattern,
and then looking up all noun concepts of the stripped
word (looking up noun concepts of a named entity
tagged word produces only concepts that have a pattern
defined, if such a pattern exists to match the word). In
addition, the head concept is restricted to the special
type, “extraction-type”.

V. EXPERIMENT

All classifiers were learned using 10-fold stratified cross-
validation on AIMed, using nine parts for training and one
part for testing in each of the ten folds. We used SVM with
a linear kernel with default parameters from the scikit-learn
package. Our human judge (a computational biologist) was
presented with some sentences from AIMed and candidate
PPIs, some of which were stated to interact in AIMed and
others which were not. The judge either agreed with the
candidate PPI or not. There were two cases for a candidate
PPI with which the judge disagreed. If the candidate PPI
was stated to interact in AIMed and judge stated it does
not interact, then that PPI was added to the inter-annotator
disagreement (IAD) file. If the candidate PPI is not stated
to interact in AIMed and the judge stated it does interact,
then that PPI was also added to the IAD file. To evaluate
the impact of training the classifier with entities in the IAD
file, we ran experiments with two types of training phases:
“Train-IAD”, training the classifier with entities in the IAD
file, and “No-Train-IAD”, not training the classifier with
entities in the IAD file. We also ran two types of evaluation
phases: “Test-IAD”, testing outputted interactions present
in the IAD file, and “No-Test-IAD”, ignoring outputted
interactions present in the IAD file.

Only entities outputted by the system with extracted
features may be classified as filter (1). However, entities not
outputted by the system, entities with no extracted features
and (for “No-Train-IAD” experiments) entities involved in
an interaction in the IAD file are all classified as don’t
filter (0) and have only a single special “nil” feature which
no other entities have. There are a total of 692 features



Table I
EXPERIMENTAL RESULTS; I IN THE FIRST COLUMN CORRESPONDS TO

“N O-TRAIN-IAD”, AND I IN THE FIRST ROW CORRESPONDS TO

“N O-TEST-IAD”.

P R F PI RI FI

RFECV 88.1 70.5 78.3 93.5 70.9 80.6
RFECV I 85.8 70.6 77.5 93.1 71 80.6
ALL I 92.6 71.1 80.5
ALL I c=.92 94.1 69.4 79.9
Manual 89 68.8 77.6 96.7 69.3 80.8
Template 80.5 70.8 75.3 86.8 71.2 78.2
RFECV+Man 97.9 69.3 81.1

including the “nil” feature. There are 111 entities labeled
as filter (1) and 1072 entities labeled as don’t filter (0) that
have features (and there are an additional 289 entities labeled
as don’t filter (0) with only the “nil” feature).

Our two baseline systems are the manual ruleset and
the template ruleset. The manual ruleset corresponds to the
manually-crafted filtering rules for AIMed (“No-Test-IAD”,
P,R,F: 96.7%, 69.3%, 80.8% and “Test-IAD”, P,R,F: 89%,
68.8%, 77.6%) which perform better than the state of the
art (F: 64.2%) [17]. The template ruleset is a version of the
manual ruleset containing the eight template filtering rules
which replace some manual filtering rules, i.e., the rules that
the classifier will replace have been removed (P,R,F: 86.8%,
71.2%, 78.2%). The recall of the template ruleset represents
an upper bound on recall for the classifier.

We learned two types of SVM classifiers with linear
kernels: those using all features, and those using recursive
feature elimination with (stratified, 10-fold) cross-validation
(RFECV). RFECV is a procedure whereby the least im-
portant features are recursively pruned from the entities’
feature vectors; each featureset is evaluated using 10-fold
cross-validation on AIMed and the featureset that minimizes
the number of misclassifications is retained. In the first
experiment, we evaluated the accuracy of the classifiers in
labeling outputted entities of the system as filter (1) or
don’t filter (0). We trained two RFECV classifiers and two
classifiers using all features; each of the two classifiers of
either type is varied with “Train-IAD” and “No-Train-IAD”.
Surprisingly, all of these configurations yield a classification
accuracy of 97%. For the second experiment, we evaluated
the overall system output when a classifier was used as a
post-processor; those results are shown in Table I. In the
table, c=0.92 indicates that an entity is only classified as
don’t filter (0) if that class has probability 0.92 or greater.

VI. D ISCUSSION

While the best RFECV classifier has F-score that is just
0.2% less than the manual ruleset, this classifier produces
3.6% less precision but 1.7% greater recall. RFECV pro-
duces only a slight increase in F-score (0.1%) compared
to using all features with no probability cutoff. Training
with entities in the IAD file or not produces similar results,

although not identical. Ignoring outputted interactions in
the IAD file produces better results in either case. The
classifier only classifiers entities in interactions outputted by
the system, i.e., TPs and FPs. Most of the misclassifications
of the system come from FNs, so even though the classifier
has 0.97% accuracy, the overall improvement in F-score
compared with the template ruleset is only 2.4%. Manual
rules combined with the RFECV classifier works best; this
combination does not reduce recall from the manual ruleset
but increases precision by 1.2%.

VII. C ONCLUSION

We have proposed a method to learn to filter entities from
the output of the Knowledge Extractor using a gold standard.
The intention of this classifier is to reduce the workload
in applying the system to a new domain. We have shown
the classifier produces comparable results with our manual
ruleset, but with less precision and greater recall.
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