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Abstract—We propose a rule-based system consisting of or a NER system, and this paper only focuses on the problem
(1) the semantic interpreter, a system relying on syntactico-  of extracting PPIs given known proteins.
semantic rules specifying the argument structures of verb Most previous work has focused on optimizing F-score

meanings, and (2) the knowledge extractor, a system relying . .
on semantic extraction rules and syntactico-semantic filtering @n average of precision and recall [10]. However, for the

rules for extracting entities from arguments. We also propose a  application of enriching manually curated PPI databas#s wi
method to automatically learn to filter entities from the output automatically extracted PPIls, obtaining high precision is
of the existing rule-based system. The goal is to ease the burden mgre important than obtaining high recall. Hence, we focus

in applying the system to a new domain, or to a similar domain L . _ . S
using a gold standard with a differing annotation policy. We on obtaining high precision while maintaining an accepabl

show the system with some of the manual rules replaced by level of recall.
the classifier as a post-processor produces comparable results
to the original rule-based system, although with slightly more Il. RELATED WORK
recall but less precision. ’
Keywords-text-mining; protein-protein interactions; machine Previous approaches for solving the PPI extraction prob-
learning; rule-based systems lem may be broadly categorized into rule-based extraction

methods and machine learning (ML) classification methods.
I. INTRODUCTION

Protein-protein interactions (PPIs) are fundamental toA' Rule-based PPl extraction

almost all of the processes of living cells; as such, their The rule-based methods extract PPIs using rules defined
study lies within the domain of several branches of biol-in terms of lexical and syntactic information. Some systems
ogy [15]. Biologists conducting PPl experiments must firstuse rules that rely only on words, part of speech (POS) tags,
validate interactions from previous research [8]. The® arand a dictionary of interaction verbs [2, 14]. A dynamic
several structured databases containing PPIs reportéein tprogramming algorithm for automatically discovering sile
literature which biologists may search [18, 11, 7, 9, 4].to extract PPIs has also been proposed [6]. Other approaches
However, these database curation efforts have not kept ugly on parsers that can produce dependency or constituent
with the thousands of new research papers published evegyees, and rules are defined over such trees. An early
day and researchers must still search through the literaturapproach similar to ours relied on manual mapping rules
for interactions [16, 8]. from argument structures (containing grammatical retesjo

As a result, growing attention has been directed at inforto frame structures (containing slots/semantic roles).[19
mation extraction techniques for the automatic constoncti That approach differs from ours in that the Sl attempts
of PPI databases from the biomedical literature. Most of theo overcome some PP attachment errors produced by the
PPIs can be found in publications indexed by MEDLINE, parser and that the KE allows mapping rules to be defined
which contains about 15 million articles with over 2,000 in terms of semantics rather than syntax. Another approach
articles added daily [8, 16]. In this paper, we study thesplits the parse tree into clauses and uses a general higorit
problem of extracting PPIs from English text, which hasfor extracting PPIs that relies on a list of interaction term
become the most widely studied problem in the biomedica[1]; 45% of their misclassifications were caused by wrong
text-mining domain [10]. named entity tags. Another system used a NER system with

We formulate the PPI extraction problem as follows: givena dictionary, interaction terms, parsing and manual rues t
a plain-text input sentence, identify the unordered pairs oidentify relations [5]. A more recent system used a few
proteins in the sentence that are stated to chemicallyacter simple rules on the output of the parser and achieved very
Solving the PPI extraction problem involves both identifyi  high precision on AlMed (94-97%), although it achieves low
protein names in the text and identifying the pairs of pritei recall (15-24%) [10]; the authors propose a more practical
that are stated to interact; both of these problems areuliffic evaluation metric that requires, for each PPI, that only one
and have not been completely solved [8]. We assume thPPI be recovered out of its possibly many identical copies
protein annotations have been provided by a gold standarid the text.



B. Machine learning-based PPI extraction a relative or not (i.e., a modifier clause that attaches to

The machine-learning methods generally extract feature80Un phrase, e.g.the proteins that interacare known”)
from paths between protein pairs in the parse tree and us¥d (3) identifying NP appositions and NP coordinations by
SVM to classify feature vectors of PPIs. Some approache§XPlicitly modifying node labels in the parse tree.
extracted features from the output of Enju, a deep parser tha The preprocessor also post-processes the MCR output to
identifies arguments of verbs by linking them to syntactic() Produce similar clauses for nominalizations of vert, (
predicate-argument structures [16] [17]; the latter syste produce clause representgtlons which serve as input to the
also uses an additional parser, and is the state of the anl and (3) enumerate candidate antecedents of each anaphor.
system for extracting PPIs from AlMed (P: 62.7%, R:Such a clause produced by the preprocessor has phrases
66.6%, F: 64.2%). Other systems also used multiple kernelwhich preserves the hierarchical structure of the parsestre _
and parsers [12] [13]. A hybrid approach extracted candidatPhrases, except that the noun phrases (NPs) do not contain

PPIs from the parse tree using high-recall manual rulegttaching prepositional phrases (PPs) or embedded eelativ
and then trained and evaluated a classifier that output tglauses. Instead, such PPs and embedded relative clauses

to produce a final classification [3]. (as well as PPs and clauses which attach to the verb
syntactically, according to the parse tree) are repredente
[ll. SYSTEM DESCRIPTION as candidate grammatical relations (the information of the

The system consists of a preprocessor, a semantic inte@riginal syntactic attachment to the phrase is preserviéd.
preter (SI) and a knowledge extractor (KE). The prepro-Sl is left to resolve this PP and clausal attachment amlyiguit
cessor produces a list of clauses with their grammaticz—:lll3
relations. The Sl uses syntactic rules (defined in terms™
of restrictions on grammatical relations) to determine the Let L denote the input to the SI, a list of clauses
arguments and adjuncts (labeled with semantic roles) df eadrom the preprocessor for a given parsed sentence. The
verb as well as to generate relations of nouns. Howevesemantic interpreter (SI) produces &t treg a list of
such a syntactic analysis of the clause to determine ityerb clauses (including nominalizations) generated fiom
arguments and adjuncts does riolly determine thenor and a list of noun relations generated from those formerly
the meaning of the verb, since semantic rules are requiredentioned outputted verb clauses; we refer to these as the
to complete the semantic interpretation (the semanticsruleoutputted clauses/relations of the SI. The predicate and no
are defined in terms on selectional restrictions on hea@ntologies as well as the noun relation rules are used to
noun concepts of arguments/adjuncts). The Sl is capabl@enerate the Sl tree. The structure of the SI tree preserves
of using such syntactico-semantic rules (i.e., restmtion ~ the hierarchical structure of, except that (1) each clause
grammatical relations combined with restrictions on headhas been linked to a predicate (possibly the empiy,
nouns) to more fully determine the meaning of the verb, butpredicate), (2) grammatical relations of clauses have been
in our current pipeline, this step is postponed until the KE,replaced by (mapped to) arguments and/or adjuncts (labeled
where the desired semantic relations and their argumeats awith semantic and/or grammatical roles), (3) head nouns of
extracted from the output of the Sl using semantic extractio NPs have been linked to concepts in the noun ontology,
rules. The KE also extracts individual noun entities from(4) PP and clausal attachments to phrases (e.g., NPs) have
those relations using syntactico-semantic filtering reled ~ been determined, and (5) candidate subjects/antecedents
then creates new relations between the individual extdactehave been constricted. Once the Sl tree is generated for each
entities of the arguments. The input to the system is #®fthe clauses i, a list of noun relations are extracted from
sentence which has optionally been annotated with named using the list of noun relation rules; each generated noun

Semantic Interpreter

entities. relation is added to the Sl tree before being finally outplitte
The noun ontology is a set of hierarchically structured
A. Preprocessor noun concepts, each containing a list of nouns, an optional

The preprocessor performs the two main tasks of parsingattern, and an optional list of parent (i.e., “is-a”) copise
the sentence (i.e., producing a parse tree consisting @& concept represents a meaning/sense of each of the nouns
phrases using Stanford parser) and producing a minimah its list of nouns. We say a concept, subsumesnother
clause reconstruction (MCR) of that parse tree. The MCR otoncept, B, if A can be reached fronB by recursively
the parse tree is performed by the module of the same nam#aversing the concepts in the list of parent concepts dfieac
and produces a list of verb clauses, each containing a list afoncept. We say a nouhas a concept in the ontology if
indexes into the parse tree labeled with grammatical mlati that noun is listed in that concept’s list of nouns , i.e.,
(e.g., candidate grammatical subjects and candidate NP arldat noun canmean that concept. If some noun has no
PP complements). The MCR also performs the additionatoncept explicitly in the noun ontology, then that noun is
tasks of (1) identifying the voice of the verb (i.e., passive still assigned to have the default, all-subsuming concept,
active), (2) identifying whether the clause is (potenyipll thing. Concepts in the noun ontology also be defined to



subcategorize for prepositions; if an NP argument/adjunc{optionally, the list can contain “negated” SRs (prefixethwi
is headed by a concept that subcategorizes for some prep6~), indicating the head nougannothave such a concept).
sition, and a PP headed by such a preposition follows thaf a generated semantic role (i.e., argument/adjunct) was
NP, the Sl will override syntactic (parser) attachment @ftth subject to an SR, the list of candidate concepts of its head
PP to preferentially attach it to that NP argument/adjunct i noun will only contain concepts which are subsumed by
the PP attachment phase. the SR (or which are not subsumed, in the case of negated
The pattern of a concept is intended to map (to thatSRs). In any case, all generated noun phrases containing
concept) from nouns that have been pre-tagged with @ head noun include a list of the head noun’s candidate
meaning/sense in a previous processing step, e.g., taggimgncepts in the noun ontology. If at least one GR and one
nouns as named entities using a NER system or a gol8R of a semantic role definition is satisfied by a grammatical
standard. If the list of concepts of a noun is requested fronmelation, a semantic role is generated for that grammatical
the ontology, first the noun is matched against the patternelation.
of each concept that has a pattern; if matches exist, the list 1) S| Algorithm Overview:The Sl determines the pred-
of matching concepts is returned as the list of concepts oifcate of each clause and its arguments and adjuncts and
that noun. Otherwise, each concept that contains that nougenerates a list of noun relations as a post-processing step
in its list of nouns is returned as the list of concepts of thaiThe Sl links a clause to a predicate by choosing from
noun. the list of candidate predicates for that clause. A predicat
The predicate ontology is a set of hierarchically strualure is in the set of candidates if it, or any predicate which
predicates, each of which represents a potential mearsubsumes it, contains the main verb of the clause in its list
ing/sense of a list of verbs. Each predicate contains thatf verbs. A candidate predicate contains a set of semantic
list of verbs, a list of of semantic role definitions (classi- role definitions, and so a choice of predicate is a choice of
fied either as arguments or adjuncts), an optional prioritysemantic roles, i.e., the choice of the predicate of theselau
integer, an optional list of required roles and an optionaland its arguments are linked.
list of parent (i.e., “is-a") predicates. During the exeont Let I be the list of candidate Sl clauses containing at
of the algorithm, each predicate has additional semantiteast one semantic role, such that each clause is generated
roles, requirements and priorities generated from itsmare from a different predicate in the list of candidate predisat
predicates. There is a predicate ontology for verbs andfirst, each candidate Sl clausefimot satisfying the list of
a predicate ontology for nominalizations of verbs, whichrequired semantic roles is removed frdmlf all remaining
allows for different hierarchical structures for the twpég  candidate Sl clauses have equal priority (as specified in
of predicates. their definition), then a candidate clause having the ldrges
Each semantic role definition is used to generate amumber of semantic roles (out of all candidate clauses in
argument or adjunct semantic role (tree) in the outputted) is chosen as the meaning of the verb. On the other
clause linked to the predicate containing that semantidand, if the remaining candidate clauses do not all have the
role definition. The arguments/adjuncts are generated froraame priority, a candidate clause having the highest pyiori
(mapped from) grammatical relations in the inputted clapyse is chosen as the meaning of the verb. The SI algorithm
L; a generated argument/adjunct preserves the hierarchicperforms the following main tasks.
structure of its corresponding inputted grammatical refat a) Generate semantic roles with their attachments for
except that PPs and relatives have been attached to phrasel.clauses inL in two passes:!
Each semantic role definition consists of a list of grammati- Semantic role definitions contain two kinds of GRs: ordi-
cal (i.e., syntactic) restrictions (GRs) and selectional,(se- nary GRs and CC GRs. CC GRs test for coordinated NPs or
mantic) restrictions (SRs). The GRs restrict the gramrahtic sub-tokens in NP coordinations or tokens of semantic roles
relations which can generate the role based on their symtactand generate a list of arguments containing each coordinate
features, while the SRs restrict those grammatical relatio NP or sub-token in the tested constituent. CC GRs have
based on their semantic features. The SRs restrict the he&#o key differences from ordinary GRs: (1) CC GRs test
noun’s concepts of the NP of the grammatical relation, whileconditions on a semantic rolcluding its attached PPs
the GRs restrict the type of the grammatical relation (e.g.father than on a grammatical relation of a clausd jrand
subject or PP), or in other cases, some GRs additionall{2) if the CC GR is satisfied, a list of semantic roles rather
restrict the types of phrases/tokens which are presentein ththan a single semantic role is generated. These CC GRs
semantic role (including its attached PPs) which would bgequire PP attachment to have taken place before they can
generated for the grammatical relation. be verified, but the decision of whether a PP/clause attaches
If the semantic role definition contains a selectional re-to a phrase requires that each clause already be linked to a
striction (SR) other thathing, a corresponding semantic role 1 _ _ _
n the current implementation, grammatical roles are also géser

will only be gen_erated if the head noun of the argu_ment hagithin each of of these two passes, but this is not necessatslaould be
a concept that is subsumed by a concept in the list of SRgostponed until after generating semantic roles entirely.



predicate and contain semantic roles, since a PP/clause méyst pass.
not attach to any phrase if it is a semantic role. As such, In either the first pass or the second pass, the following
semantic roles are be generated in two passes of the clausseps are taken to generate semantic roles with their attach
in L. ments. For each clause to be processed, a predicate (possibl
In the first pass, the Sl generates semantic roles with theithe empty,nil predicate) is chosen and its corresponding
attachments for all clauses iy if a semantic role definition argumentsemantic roles are generated. PPs and relative
of a candidate predicate contains CC GR, that CC GR islauses are attached to phrases in two phrasal attachment
not used directly, but is transformed into a less restictiv phases: firstly, PPs are attached to NP semantic roles that
GR that does not test for conditions in PP attachmétts. have a head concept defining a preposition subcategorizatio
the first pass has generated a clause containing a semantjwssibly overriding the parser's attachment), and segond
role that was produced by being subject to such a reduced®Ps and relatives are attached to phrases using the sgntacti
restriction CC GR, then that semantic role and the predicatattachment produced by the parser. lfetbe a grammat-
of the clause are not finally determined until the end ofical relation of the inputted clause that is a candidate PP
the second pass. In the beginning of the second pass, thosemplement or clausal complement. #f is not actually a
generated semantic roles subject to such reduced-rastrict complement, then it must instead attach to a phrase within
CC GRs already contain their PP attachments, and onlg role, and the following steps are taken to attach such a
these kinds of clauses are processed to finally determine ffhrase,P, in the second phrasal attachment phase. If a role
its generated semantic roles satisfy their full-reswictCC ~ was generated foP, then P cannot attach to any phrase
GRs. If a semantic role does not satisfy the full-restrictio within a role of that clause or any other clause (however,
CC GR, then a competing candidate predicate may linked® may still be an argument of another clause). If a role
to the clause instead. PP attachment is performed in botvas not generated forP, then the attachment information
passes for the generated roles, but any candidate PP/clauseP according to the parse tree is used, d@hanay attach
grammatical relation that was used to generate a semant@ther to the verb or to a phrase within a role of that
role in the first or second pass may not attach to any phrasgause. Following phrasal attachment, gmjunct semantic
of a role generated in the second pass. roles (including their phrasal attachments) of the chosen
b) Generate semantic roles with their attachments forpredicate are generated. Adjuncts are generated the same
the clauses to be processed in two passes within either gfay as arguments, except they cannot be generated for any
the two passes described aboweor each of the two passes candidate grammatical relation that is an argument or is
described above, a semantic role for a clause is generaté@dtached to a phrase in an argument.
from some grammatical relation of that clause. With some  C€) Generate grammatical roles with their attachments
restrictions, a semantic role can also be generated from f@r all clauses inL: For a given clause, a grammatical
grammatical relation of its parent to recover from attachime role is generated from any grammatical relation that aétach
errors made by the parser. Towards this end, the semantiyntactically to the verb, but is not a semantic role and ts no
roles and their attachments are generated also in two passaéached to any phrase within a semantic role. A grammatical
within either of the passes described above. The first pag®le is generated by first generating a semantic role definiti
generates semantic roles using only post-verbal gramataticthat depends on the type of grammatical relation, and then
relations that are syntactically attached by the parsen¢o t by generating a semantic role from that definition; phrasal
verb to generate a list of grammatical relations mapping t@ttachment for a such a generated grammatical role is
such semantic roles and their attaching PPs and relativeperformed in the same way as for a semantic role.
The list contains grammatical relations that are part of a  d) Post-process the output to filter antecedents of
semantic role generated using the attachment of the parsgnaphors generated by the preprocessor and generate new
and that may not be used (in the second pass) by claus&oun relations:Noun relations are generated from the list of
not having that grammatical relation syntactically atetko ~ noun relation rules of the Sl, which, similarly to predicate
generate semantic roles. That is, in the second pass, sSemargontain a list of semantic role definitions, although these
roles are generated for all clauseslirsuch that a semantic definitions contain only GRs. These GRs place restrictions
role can also be generated from a grammatical relationghat ion which phrases of roles can be used to generate semantic
not syntactically attached to the verb (but that is syntatlf ~ roles. Like the CC GRs of predicates, these GRs verify prop-
and post-verbally attached to its post-verbal parent) hatl t erties of the Sl output (in particular, phrases of rolesheat
is not in the list of grammatical relations generated in thethan the preprocessor output (i.e., grammatical relations
some of these GRs are also CC GRs that generate lists of
Zn the current implementation, for a given clause with cargida semantic roles from a single phrase. A noun relation rule is
s ot G i o oo ettt defined for a concept n the noun ontology, and isfred on a
noun phrase if its head noun has a concept that is subsumed

its candidate predicates. This is computationally ineffigisince the partial ! ¢
results from the first pass for these clauses are not usee isetond pass.  (in the noun ontology) by the concept for which the noun



relation rule is defined. Although the noun relation rules ar of the arguments of the relation are within the scope of the
also hierarchically structured, this hierarchy is used/diyy NP and that a nil extraction rule be used when one of the
KE extraction rules to determine whether they can fire on arguments is external, i.e., one of its arguments is another
noun relation. argument/adjunct of its clause.

The primary task of the KE-2 is to extract noun entities
having a concept subsumed by an extraction type (i.e.,

The KE extracts relations from the clauses/relations ofextraction entities) from the arguments of KE-1 relations.
the Sl in three phases: (1) the KE-1 produces a list oRules that filter phrases and tokens within arguments are
the desired relationE-1 relations extracted from the Sl required by the entity extraction algorithm because even if
clauses/relations using a list of orderextraction rules (2)  the arguments of the KE-1 relation are correct, not every
the KE-2 produce&E-2 relationsby transforming its input  extraction entity in every argument may relate to every
so that arguments contain extracted noun entities usirgj a liother extraction entity in every other argument. Although
of orderedfiltering rules and (3) the KE-3 forms a list of the inputted KE-1 relations should be correct, the KE-2 also
n-tuples of extracted noun entities from each KE-2 relationcontains rules to filter erroneous relations.
say,r, where such am-tuple represents an instance of the Rules to filter tokens, phrases and relations are defined by
relation,r, between its» noun entities. filter-token, filter-phrase and filter-relation types oféfiing

Let S denote the input to the KE-1 from the SI, i.€.js  rules, respectively. These rules contain a list of condgio
a list of clauses/relations that are linked to predicatasin and pre-filtering actions to take upon firing the rule but
relation rules and that contain arguments and adjuncts lébefore filtering the constituent. Each rule type defines its
beled with semantic or grammatical roles. An extractionown set of primitive condition types which test syntactic
rule defines a relation in terms of semantic role definitionsproperties (e.g., the phrase label) or semantic properties
while semantic role definitions of predicates are defined ine.g., a concept of the head noun) of constituents. A rule is
terms of GRs (i.e., syntax), the semantic role definitions ofconstructed by specifying a list conditions and post-fittgr
extraction rules are defined in terms of semantic role labelactions with their parameters.
of predicates and of noun relation rules (i.e., semantics). The conditions of each filter-phrase (filter-token) rule are
Semantic role definitions of extraction rules can also defingested on each phrase (token) of each KE-1 relation; if
optional SRs that are analogous to the SRs of semantic rolae conditions are satisfied, the rule fires, the pre-filterin
definitions of predicates. A semantic role definition, sagf ~ actions are taken and the phrase (token) is filtered; a tree
an extraction rule, say, also definegxtraction typeswhich  indicating which rule filtered the phrase (token) is insgrte
are are a list of noun concepts that restrict the conceptseof t in the outputted KE-2 relation at the tree that corresponds
noun entities that the KE-2 can extract from the semantido the tree in the KE-1 relation on which the rule fired (the
role(s) generated by in the KE-1 relation generated by hierarchical structure of the KE-1 relation is preserved in
r (multiple semantic roles can be generated from a singlehe KE-2 relation). The conditions of the filter-relatioresi
semantic role definitions, if the semantic role of the SI are similarly tested on each KE-1 relation to determine if
being extracted from is actually a list of coordinated rolesthe relation should be filtered.
as produced by a CC GR). The extraction types of are also
used by the KE-1 to filter roles, antecedents of anaphors,
and subjects not containing a noun entity having a concept We have developed a list of manually-crafted filtering
subsumed by an extraction type. rules for our gold standard development corpus, AlMed,

An extraction rule may also be defined for an empty,termed the “manual ruleset”. While those filtering rules work
nil, predicate. The semantic role definitions of such a nilwell for AIMed, they may not be suitable for extracting PPIs
extraction rule arenot defined in terms of semantic role from other corpora with slightly differing annotation paits
labels of predicates and of noun relation rules. Instead(e.g., LLL or Biolnfer). Our goal is to learn a classifier
such a semantic role definition generates a semantic rol® filter outputted entities of the system (i.e., present in
by matching any role in the Sl clause that satisfies thean argument of a KE-3 relation) as a final post-processing
definition’s SR (if one is defined; otherwise, any role will step. To this end, some of the rules in the manual ruleset
be chosen). Such nil extraction rules may be used in casegere replaced byemplate rulego create a new ruleset, the
where the desired relation to be extracted is indicated by th“template ruleset”, which preserves the original orderirig
head noun of an argument/adjunct rather than by a verb. Athe manual ruleset. The KE-2 uses the template rules to
alternative to using a nil extraction rule is to define a noungenerate features for outputted entities. The classifaante
relation rule in the SI. However, a noun relation rule may fireto label each outputted entity either as filter (1) or dontéfil
on the head noun of any noun phrase, not just noun phras€8). An entity is classified as filter (1) if it is involved in a
that are roles (i.e., arguments/adjuncts). For this reeistm  FP relation (e.g., PPI) with respect to the gold standard; it
intended that a noun relation rule be used in cases when ah classified as don't filter (0), otherwise.

C. Knowledge Extractor

IV. LEARNING TO FILTER ENTITIES



A template rule is defined as a filtering rule containing The condition instances vary depending on the condition,
a list of conditions such that the last condition has>as as described below. Let P (R) be the phrase (relation) on
its last parameter (a condition instance of a template willwhich the rule fired if the condition is part of a filter-phrase
only be generated if all previous conditions are satisfied)(filter-relation) rule.

If the KE-2 tests whether thezT>condition of a template « arg-head- All head noun concepts of all arguments of
rule satisfies properties of a constituent, that constituglh R

not be filtered by the template rule, but a list edndition « m-concept- All noun concepts of modifiers of the head
instancesf that condition will be generated at the tree in the noun of P.

KE-2 relation corresponding to the tree in the KE-1 relation , h-concept- All noun concepts of the head noun of P.
on which that condition was tested. Each condition instance , mod-word - All modifier words of the head noun of P
contains the name of the template rule, the name of the  that have no noun concept.

condition containing<T>and a parameter for that condition , alt-ex-head- All “alternate” noun concepts of the head
which would cause the constituent to be filtered if such a noun of P that has a noun concept with a pattern

rule existed as an actual filtering rule. defined, indicating that head noun has a named entity
Any primitive condition (containing a<T>or not) being tag; the “alternate” concepts of such a tagged entity are
tested on a constituent first generates a list of all proper-  produced by first removing the tag using its pattern,
ties extracted from that constituent which could poteltial and then looking up all noun concepts of the stripped
satisfy it; the parameters of the condition are checked word (looking up noun concepts of a named entity
against this list of possibilities to determine if the catusnt tagged word produces only concepts that have a pattern

should be filtered. The properties that are extracted fram th defined, if such a pattern exists to match the word). In
constituent depend on the condition type. For example, the  addition, the head concept is restricted to the special
primitive condition, h-concept, first generates a list df al type, “extraction-type”.

concepts of the head noun and then checks if its list of
parameters satisfies that generated list; a parameter of h-
Concept iS a noun Concept prefixed by “" or not and can All classifiers were learned USing 10-fold stratified cross-
specify that a concept of a head noun either be subsume@lidation on AlMed, using nine parts for training and one
by the parameter or not. The condition instances of &art for testing in each of the ten folds. We used SVM with
<T>condition only cause the first step of this process to bet linear kernel with default parameters from the scikittea
carried out, i.e., generating the list of properties exedc Package. Our human judge (a computational biologist) was
from the constituent, but not filtering; however, in additio presented with some sentences from AlMed and candidate
the properties in the generated list are outputted as dondit PPIs, some of which were stated to interact in AIMed and
instances. others which were not. The judge either agreed with the
Of:andidate PPI or not. There were two cases for a candidate

template filtering rules on the depth-first traversal frora th PPI with which the judge disagreed. If the candidate PPl

root to that entity. Such a condition instance represents g/ats. sttatedt ttoh mtcirr]ac;tF:r;IAIMed dac‘jm:j JtUd,?he §t::1ted I dto (:s
potential filtering rule, i.e., an instantiation of the tdatp not interact, then tha was added to ne inter-annotator

rule with its corresponding condition instance which Woulddisagreement (IAD) file. If the candidate PPl is not stated

cause that entity to be filtered. In addition, the featureagrof tﬁ mter:actpllr;IAIMed land g:je éUdgehSt?fg ]'ctl do_?s mtelract,
entity also include such condition instances of other iestit then that was also added to the lle. To evaluate

involved in an outputted relation with that entity. We have ]'E.r;e impact of trammg Te c.Ita;s?flertwnh e?tf[Ue.s n thi IAD )
defined eight template rules. “' &, we raT expenments with two types ol training phases.
Train-lIAD”, training the classifier with entities in the B
1) (filter-relation T1 (cond (ex-rule general-rule- file, and “No-Train-IAD", not training the classifier with

V. EXPERIMENT

The features of an entity are the condition instances

interaction-property) (arg-headT>))) entities in the 1AD file. We also ran two types of evaluation
2) (filter-phrase T2 (cond (label np np-prn prn np-apposphases: “Test-IAD", testing outputted interactions pnese

nom-np) (np-child-0 (h-conceptT>)))) in the IAD file, and “No-Test-IAD”, ignoring outputted
3) (filter-phrase T3 (cond (label np np-prn prn np-apposinteractions present in the IAD file.

nom-np) (np-child-0 (m-conceptT>)))) Only entities outputted by the system with extracted
4) (filter-phrase T4 (cond (label np np-prn prn np-apposfeatures may be classified as filter (1). However, entitigs no

nom-np) (np-child-0 (mod-wore&T>)))) outputted by the system, entities with no extracted feature
5) (filter-phrase T5 (cond (m-conceptT >))) and (for “No-Train-IAD” experiments) entities involved in
6) (filter-phrase T6 (cond (mod-wordT>))) an interaction in the IAD file are all classified as don't
7) (filter-phrase T7 (cond (h-conceptT>))) filter (0) and have only a single special “nil” feature which

8) (filter-phrase T8 (cond (alt-ex-headT>))) no other entties have. There are a total of 692 features



Table |

EXPERIMENTAL RESULTS; I IN THE FIRST COLUMN corresponps To  although not identical. Ignoring outputted interactioms i

“NO-TRAIN-IAD”, AND I IN THE FIRST ROW CORRESPONDS TO the IAD file produces better results in either case. The
NO-TESFIAD". classifier only classifiers entities in interactions outpditby
P R F P, R, F the system, i.e., TPs and FPs. Most of the misclassificati'qns
RFECV 881 705 783 935 709 806 of the system come from FNs, so even though the classifier
RFECV I 858 706 775/ 931 71 806 has 0.97% accuracy, the overall improvement in F-score
ALL I 926 711 805 d with th | | ; v 2.4%. M |
ALL I c=.92 941 694 799 compared with the template ruleset is only 2.4%. Manua
Manual 89 688 776 96.7 693 80.8 rules combined with the RFECV classifier works best; this
Template 805 708 753|868 712 782 combination does not reduce recall from the manual ruleset
RFECV+Man 979 69.3 811

but increases precision by 1.2%.

VIl. CONCLUSION

including the “nil” feature. There are 111 entities labeled We have proposed a method to learn to filter entities from

as filter (1) and 1072 entities labeled as don't filter (0) thaty,e o 1t of the Knowledge Extractor using a gold standard.
have features (and there are an additional 289 entitieteldbe The intention of this classifier is to reduce the workload

as don't filter (0) with only the “nil” feature).

in applying the system to a new domain. We have shown

Our two baseline systems are the manual ruleset anghe cjassifier produces comparable results with our manual
the template ruleset. The manual ruleset corresponds to th§ieset but with less precision and greater recall.

manually-crafted filtering rules for AIMed (“No-Test-IADR”
P,R,F: 96.7%, 69.3%, 80.8% and “Test-IAD", P,R,F: 89%,
68.8%, 77.6%) which perform better than the state of the[1]
art (F: 64.2%) [17]. The template ruleset is a version of the
manual ruleset containing the eight template filtering sule
which replace some manual filtering rules, i.e., the rules th

the classifier will replace have been removed (P,R,F: 86.8%,
71.2%, 78.2%). The recall of the template ruleset represent
an upper bound on recall for the classifier.

We learned two types of SVM classifiers with linear [2]
kernels: those using all features, and those using reeursiv
feature elimination with (stratified, 10-fold) cross-whdtion
(RFECV). RFECV is a procedure whereby the least im-
portant features are recursively pruned from the entities’
feature vectors; each featureset is evaluated using #0-fol [3
cross-validation on AlIMed and the featureset that minisize
the number of misclassifications is retained. In the first
experiment, we evaluated the accuracy of the classifiers in[4]
labeling outputted entities of the system as filter (1) or
don't filter (0). We trained two RFECYV classifiers and two
classifiers using all features; each of the two classifiers o
either type is varied with “Train-IAD” and “No-Train-lIAD".
Surprisingly, all of these configurations yield a classtiima [6]
accuracy of 97%. For the second experiment, we evaluated
the overall system output when a classifier was used as a
post-processor; those results are shown in Table I. In the,
table, ¢c=0.92 indicates that an entity is only classified as
don't filter (0) if that class has probability 0.92 or greater

(151

(8]
VI. DISCUSSION

While the best RFECV classifier has F-score that is just
0.2% less than the manual ruleset, this classifier produced®]
3.6% less precision but 1.7% greater recall. RFECV pro-
duces only a slight increase in F-score (0.1%) compare?lo]
to using all features with no probability cutoff. Training
with entities in the 1AD file or not produces similar results,

REFERENCES
Syed Toufeeq Ahmed, Deepthi Chidambaram, Hasan
Davulcu, and Chitta Baral. Intex: A syntactic role

driven protein-protein interaction extractor for bio-medical
text. In ISMB BIOLINK SPECIAL INTEREST GROUP
ON TEXT DATA MINING AND THE ACL WORKSHOP
ON LINKING BIOLOGICAL LITERATURE, ONTOLOGIES
AND DATABASES: MINING BIOLOGICAL SEMANTICS
(BIOLINK’2005), pages 54-61, 2005.

Christian Blaschke, Miguel A. Andrade, Christos Ouzounis,
and Alfonso Valencia. Automatic extraction of biological
information from scientific text: Protein-protein interactions.
In Proceedings of the Seventh International Conference on In-
telligent Systems for Molecular Biologgages 60—67. AAAI
Press, 1999. ISBN 1-57735-083-9.

] Quoc-Chinh Bui, Sophia Katrenko, and Peter M. A. Sloot.

A hybrid approach to extract proteinprotein interactions.
Bioinformatics 27(2):259-265, 2011. doi: 10.1093/bioinfor-
matics/btq620.

Gene Ontology Consortium. The gene ontology (go) database
and informatics resourceNucleic Acids Researct82(suppl
1):D258-D261, 2004. doi: 10.1093/nar/gkh036.

Katrin Fundel, Robert Kffner, Ralf Zimmer, and Satoru
Miyano. Relexrelation extraction using dependency parse
trees. Bioinformatics 23, 2007.

Minlie Huang, Xiaoyan Zhu, Yu Hao, Donald G. Payan,
Kunbin Qu, and Ming Li. Discovering patterns to extract
proteinprotein interactions from full text&ioinformatics 20
(18):3604-3612, 2004. doi: 10.1093/bioinformatics/bth451.
Ruth Isserlin, Rashad A. El-Badrawi, and Gary D. Bader.
The biomolecular interaction network database in psi-mi 2.5.
Database 2011, 2011. doi: 10.1093/database/bagq037.
Hyunchul Jang, Jaesoo Lim, Joon ho Lim, Soo jun Park,
and Kyu chul Lee. Finding the evidence for protein-protein
interactions from pubmed abstracBioinformatics 22:2006,
2006.

Minoru Kanehisa and Susumu Goto. Kegg: Kyoto encyclo-
pedia of genes and genomééucleic Acids Researcl28(1):
27-30, 2000. doi: 10.1093/nar/28.1.27.

Junkyu Lee, Seongsoon Kim, Sunwon Lee, Kyubum Lee, and
Jaewoo Kang. High precision rule based ppi extraction and
per-pair basis performance evaluation.Aroceedings of the



ACM sixth international workshop on Data and text mining
in biomedical informaticsDTMBIO '12, pages 69-76, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1716-0. doi:
10.1145/2390068.2390082.

[11] Michele Magrane and UniProt Consortium. Uniprot knowl-
edgebase: a hub of integrated protein dddatabase 2011,
2011. doi: 10.1093/database/bar009.

[12] Makoto Miwa, Rune Saetre, Yusuke Miyao, and Jun’ichi
Tsujii. A rich feature vector for protein-protein interaction
extraction from multiple corpora. IRroceedings of the 2009
Conference on Empirical Methods in Natural Language Pro-
cessing: Volume 1 - Volume EMNLP '09, pages 121-130,
Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics. ISBN 978-1-932432-59-6.

[13] Makoto Miwa, Rune Stre, Yusuke Miyao, and Junichi
Tsujii. Proteinprotein interaction extraction by leveraging
multiple kernels and parsers. International Journal of
Medical Informatics 78(12):e39 — e46, 2009. ISSN
1386-5056. doi: 10.1016/j.ijmedinf.2009.04.010. URL
http://ww. sci encedirect.coniscience/articlel/pii/S1386505609000768.
jce:title¢ Mining of Clinical and Biomedical Text and Data
Special Issuej/ce:titleg,.

[14] Toshihide Ono, Haretsugu Hishigaki, Akira Tanigami, and
Toshihisa Takagi. Automated extraction of information
on proteinprotein interactions from the biological literature.
Bioinformatics 17(2):155-161, 2001. doi: 10.1093/bioinfor-
matics/17.2.155.

[15] Eric M. Phizicky and Stanley Fields. Protein-protein interac-
tions: Methods for detection and analysis, 1995.

[16] Rune Saetre and Kenji Sagae. Syntactic features for protein-
protein interaction extraction. IRroceedings of the 2nd Inter-
national Symposium on Languages in Biology and Medjcine
Singapore, 2007.

[17] Rune Saetre, Kazuhiro Yoshida, Makoto Miwa, Takuya
Matsuzaki, Yoshinobu Kano, and Jun’ichi Tsuji. Ex-
tracting protein interactions from text with the unified
akanere event extraction system. IEEE/ACM Trans.
Comput. Biol. Bioinformatics 7(3):442—-453, July 2010.
ISSN 1545-5963. doi: 10.1109/TCBB.2010.46. URL
http://dx. doi.org/10.1109/ TCBB. 2010. 46.

[18] Lukasz Salwinski, Christopher S. Miller, Adam J. Smith,
Frank K. Pettit, James U. Bowie, and David Eisenberg.
The database of interacting proteins: 2004 updatBu-
cleic Acids Research32(suppl 1):D449-D451, 2004. doi:
10.1093/nar/gkh086.

[19] Akane Yakushiji, Yuka Tateisi, Yusuke Miyao, and Jun ichi
Tsujii. Event extraction from biomedical papers using a full
parser. InPac. Symp. Biocompupages 408-419, 2001.



